OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: James C. Wyant
  • Vol. 47, Iss. 31 — Nov. 1, 2008
  • pp: 5799–5810

Thermal infrared radiance simulation with aggregation modeling (TITAN): an infrared radiative transfer model for heterogeneous three-dimensional surface—application over urban areas

Guillaume Fontanilles, Xavier Briottet, Sophie Fabre, and Thierry Trémas  »View Author Affiliations


Applied Optics, Vol. 47, Issue 31, pp. 5799-5810 (2008)
http://dx.doi.org/10.1364/AO.47.005799


View Full Text Article

Enhanced HTML    Acrobat PDF (23737 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The thermal infrared radiance simulation with aggregation modeling (TITAN) model, presented here, is an innovative transfer radiative code in the infrared domain ( 3 14 μm ). It takes into account the three-dimensional (3D) structure of the landscape and simulates all the radiative components introduced by this 3D structure, which are due to the reflection and emission of walls and sloping roofs. Examples are given to illustrate the new opportunities offered by TITAN over urban areas. First, a phenomenological study is conducted at four wavelengths analyzing the relative effect of all the radiative contributors to the total signal. The same analysis is performed at bottom of atmosphere, which reveals an error occurring when a flat assumption is made (between 1% and 5%). In a second example, the directional effects at sensor level are simulated and show that the radiative temperature can vary by up to 10 K .

© 2008 Optical Society of America

OCIS Codes
(280.0280) Remote sensing and sensors : Remote sensing and sensors
(010.5620) Atmospheric and oceanic optics : Radiative transfer

ToC Category:
Atmospheric and Oceanic Optics

History
Original Manuscript: June 13, 2008
Revised Manuscript: September 11, 2008
Manuscript Accepted: September 18, 2008
Published: October 24, 2008

Citation
Guillaume Fontanilles, Xavier Briottet, Sophie Fabre, and Thierry Trémas, "Thermal infrared radiance simulation with aggregation modeling (TITAN): an infrared radiative transfer model for heterogeneous three-dimensional surface--application over urban areas," Appl. Opt. 47, 5799-5810 (2008)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-47-31-5799


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. Herold, H. Couclelis, and K. C. Clarke, “The role of spatial metrics in the analysis and modeling of urban land use change,” Comput. Environ. Urban Syst. 29, 369-399 (2003). [CrossRef]
  2. P. K. Rao, “Remote sensing of urban heat islands from an environmental satellite,” Bull. Am. Meteorol. Soc. 53, 647-648(1972).
  3. J. A. Voogt and T. R. Oke, “Thermal remote sensing of urban climates,” Remote Sens. Environ. 86, 370-384 (2003). [CrossRef]
  4. V. Masson, G. Pigeon, P. Durand, L. Gomes, L. Salmond, J.-P. Lagouarde, J. Voogt, T. Oke, C. Lac, C. Liousse, and D. Maro, “The Canopy and Aerosol Particles In Toulouse Urban Layer (CAPITOUL) experiments: first results,” Proceedings Fifth Symposium on the Urban Environment (AMS, 2004).
  5. P. Mestayer, P. Durand, and P. Augustin, “The urban boundary-layer field campaign in Marseille (UBL/CLU-ESCOMPTE): setup and first results,” Boundary Layer Meteorol. 114, 315-365 (2005). [CrossRef]
  6. J. A. Voogt and T. R. Oke, “Effects of urban surface geometry on remotely-sensed surface temperature,” Intl. J. Remote Sens. 19, 895-920 (1998). [CrossRef]
  7. J.-P. Lagouarde, P. Moreau, M. Irvine, J.-M. Bonnefond, J. A. Voogt, and F. Solliec, “Airbone experimental measurements of the angular variations in surface temperature over urban areas: case study of Marseille (France),” Remote Sens. Environ. 93, 443-462 (2004). [CrossRef]
  8. M.-J. Antoine and G. Groleau, “Assessing solar energy and environmental variables in urban outdoor spaces: a simulation tool,” in 5th European Conference on Solar Energy in Architecture and Urban Planning (Eurosolar, 1999).
  9. G. T. Johnson, T. R. Oke, T. J. Lyons, D. G. Steyn, I. D. Watson, and J. A. Voogt, “Simulation of surface urban heat islands under 'ideal' conditions at night,” Boundary Layer Meteorol. 56, 275-294 (1991). [CrossRef]
  10. J. A. Voogt, “Remote sensing of urban surface temperatures,” Ph.D. dissertation (University of British Columbia, 1995).
  11. E. S. Krayenhoff and J. A. Voogt, “A micro-scale 3D urban energy balance model for studying surface temperatures,” Boundary Layer Meteorol. 123, 433-461 (2007). [CrossRef]
  12. J.-P. Gastellu-Etchegorry, V. Demarez, V. Pinel, and F. Zagolski, “Modeling radiative transfer in heterogeneous 3D vegetation canopies,” Remote Sens. Environ. 58, 131-156(1996). [CrossRef]
  13. L. O. Myrup, “A numerical model of the urban heat island,” J. Appl. Meteorol. 8, 908-918 (1969). [CrossRef]
  14. A. Soux, J. A. Voogt, and T. R. Oke, “A model to calculate what a remote sensor 'sees' of an urban surface,” Boundary Layer Meteorol. 111, 401-424 (2004). [CrossRef]
  15. S. Pallotta, X. Briottet, C. Miesch, and Y. Kerr, “Sensor radiance physical model for rugged heterogeneous surfaces in the 3-14 μm region,” Opt. Express 14, 2130-2150(2006). [CrossRef] [PubMed]
  16. V. Masson, “A physically-based scheme for the urban energy budget in atmospheric models,” Boundary Layer Meteorol. 94, 357-397 (2000). [CrossRef]
  17. A. Berk, G. P. Anderson, L. S. Bernstein, P. K. Acharya, H. Dothe, M. W. Matthew, S. M. Adler-Golden, J. H. Chetwynd, S. C. Richtsmeier, B. Pukall, C. L. Allred, L. S. Jeong, and M. L. Hoke, “MODTRAN4 radiative transfer modeling for atmospheric correction,” Proc. SPIE 3756 (1999). [CrossRef]
  18. S. Lachérade, C. Miesch, D. Boldo, X. Briottet, C. Valorge, and H. Le Men, “Development of an inversion code, ICARE, able to extract urban areas ground reflectances,” presented at the Tenth International Symposium on Physical Measurements and Signatures in Remote Sensing (ISPMSRS'07), Davos, Switzerland, 12-14 March 2007.
  19. M. Abrams, “The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) : data products for the high spatial resolution imager on NASA's Terra platform,” Intl. J. Remote Sens. 21, 847-859 (2000). [CrossRef]
  20. T. Schmugge, A. French, J. C. Ritchie, A. Rango, and H. Pelgrum, “Temperature and emissivity separation from multispectral thermal infrared observations,” Remote Sens. Environ. 79, 189-198 (2002). [CrossRef]
  21. J. A. Voogt, “Assessment of an urban sensor view model for thermal anisotropy,” Remote Sens.Environ. 112, 482-495(2008). [CrossRef]
  22. A. Hénon, P. Mestayer, and D. Groleau, “Thermo-radiative modeling and energy balance of the urban canopy: relations between simulated and measurable temperatures,” presented at the Seventh Symposium on the Urban Environment, San Diego, California, 10-17 September 2007.
  23. S. Pallotta, “Compréhension du signal issu d'une surface hétérogène dans le domaine infrarouge en télédétection : analyse de l'agrégation des propriétés thermo-optiques de ses constituents,” Ph.D. dissertation ( l'Ecole Nationale Supérieure de l'Aéronautique et de l'Espace, 2006).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited