OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: James C. Wyant
  • Vol. 47, Iss. 31 — Nov. 1, 2008
  • pp: 5811–5820

Analysis of simulated and experimental backscattered images of turbid media in linearly polarized light: estimation of the anisotropy factor

Julie Falconet, Raphaël Sablong, Emmanuel Perrin, Franck Jaillon, and Hervé Saint-Jalmes  »View Author Affiliations


Applied Optics, Vol. 47, Issue 31, pp. 5811-5820 (2008)
http://dx.doi.org/10.1364/AO.47.005811


View Full Text Article

Enhanced HTML    Acrobat PDF (30327 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Optical characterization of biological tissues is of real interest to improve medical diagnosis, in particular in the detection of precancerous tissues. We propose a new, noninvasive method allowing the estimation of the anisotropy factor. This method is based on the image analysis of the Q element of the Stokes vector backscattered from the turbid medium. These Q-element images show specific patterns depending on g. Therefore the use of Fourier descriptors (FDs) on simulated data to discriminate the specific geometrical features of the Q element enabled us to determine a linear relation between the anisotropy factor and six FDs. This method was applied on experimental data obtained with calibrated solutions. The anisotropy factor was estimated with a maximum relative error of 13%.

© 2008 Optical Society of America

OCIS Codes
(170.7050) Medical optics and biotechnology : Turbid media
(260.5430) Physical optics : Polarization
(290.1350) Scattering : Backscattering
(290.4020) Scattering : Mie theory
(290.4210) Scattering : Multiple scattering
(290.5850) Scattering : Scattering, particles

ToC Category:
Medical Optics and Biotechnology

History
Original Manuscript: March 31, 2008
Revised Manuscript: September 18, 2008
Manuscript Accepted: September 24, 2008
Published: October 24, 2008

Virtual Issues
Vol. 4, Iss. 1 Virtual Journal for Biomedical Optics

Citation
Julie Falconet, Raphaël Sablong, Emmanuel Perrin, Franck Jaillon, and Hervé Saint-Jalmes, "Analysis of simulated and experimental backscattered images of turbid media in linearly polarized light: estimation of the anisotropy factor," Appl. Opt. 47, 5811-5820 (2008)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-47-31-5811


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. A. Nezhuvingal, L. Yanfang, H. Anumula, and B. D. Cameron, “Mueller matrix optical imaging with application to tissue diagnostics,” in Laser-Tissue Interaction XIV, S. L. Jacques, D. D. Duncan, S. J. Kirkpatrick, and A. Kriete, eds. (SPIE, 2003), pp. 137-146.
  2. V. Backman, R. Gurjar, K. Badizadegan, I. Itzkan, R. R. Dasari, L. T. Perelman, and M. S. Feld, “Polarized light scattering spectroscopy for quantitative measurement of epithelial cellular structures in situ,” IEEE J. Sel. Top. Quantum Electron. 5, 1019-1026 (1999). [CrossRef]
  3. E. S. Papazoglou, M. S. Weingarten, L. Zubkov, L. Zhu, S. Tyagi, and K. Pourrezaei, “Optical properties of wounds: diabetic versus healthy tissue,” IEEE Trans. Biomed. Eng. 53, 1047-1055 (2006). [CrossRef] [PubMed]
  4. J. R. Mourant, J. P. Freyer, A. H. Hielscher, A. A. Eick, D. Shen, and T. M. Johnson, “Mechanisms of light scattering from biological cells relevant to noninvasive optical-tissue diagnostics,” Appl. Opt. 37, 3586-3593 (1998). [CrossRef]
  5. B. Beauvoit, T. Kitai, and B. Chance, “Contribution of the mitochondrial compartment to the optical properties of rat liver: a theoretical and practical approach,” Biophys. J. 67, 2501-2510 (1994). [CrossRef] [PubMed]
  6. E. Salomatina, B. Jiang, J. Novak, and A. N. Yaroslavsky, “Optical properties of normal and cancerous human skin in the visible and near-infrared spectral range,” J Biomed. Opt. 11, 064026 (2006). [CrossRef]
  7. J. Beek, P. Blokland, P. Posthumus, M. Aalders, J. Pickering, H. Sterenborg, and M. van Gemert, “In vitro double-integrating-sphere optical properties of tissues between 630 and 1064 nm,” Phys. Med. Biol. 42, 2255-2261 (1997). [CrossRef] [PubMed]
  8. Y. Du, X. H. Hu, M. Cariveau, X. Ma, G. W. Kalmus, and J. Q. Lu, “Optical properties of porcine skin dermis between 900 nm and 1500 nm,” Phys. Med. Biol. 46, 167-181 (2001). [CrossRef]
  9. N. Joshi, C. Donner, and H. W. Jensen, “Noninvasive measurement of scattering anisotropy in turbid materials by nonnormal incident illumination,” Opt. Lett. 31, 936-938 (2006). [CrossRef] [PubMed]
  10. L. Wang and S. L. Jacques, “Use of a laser beam with an oblique angle of incidence to measure the reduced scattering coefficient of a turbid medium,” Appl. Opt. 34, 2362-2366(1995). [CrossRef] [PubMed]
  11. D. J. Faber, F. van der Meer, M. C. Aalders, M. de Bruin, and T. G. van Leeuwen, “Hematocrit-dependance of the scattering coefficient of blood determined by optical coherence tomography,” in European Congress of Biomedical Optics (O. S. O. American, 2005).
  12. A. Kienle, M. S. Patterson, L. Ott, and R. Steiner, “Determination of the scattering coefficient and the anisotropy factor from laser Doppler spectra of liquids including blood,” Appl. Opt. 35, 3404-3412 (1996). [CrossRef] [PubMed]
  13. L. Voisin-Gobin, “Quantification de l'interaction lumière-tissus biologiques par la mesure non invasive du coefficient d'absorption et du coefficient réduit de diffusion,” in Génie Biologique et Médical (Université Paris XII, 1999).
  14. A. H. Hielscher, J. R. Mourant, and I. J. Bigio, “Influence of particle size and concentration on the diffuse backscattering of polarized light from tissue phantoms and biological cell suspensions,” Appl. Opt. 36, 125-135 (1997). [CrossRef] [PubMed]
  15. C. T. Zahn and R. Z. Roskies, “Fourier descriptors for plane closed curves,” IEEE Trans. Comput. C-21, 269-281 (1972). [CrossRef]
  16. J. Falconet, R. Sablong, F. Jaillon, E. Perrin, and H. Saint-Jalmes, “Towards optical characterization of biological media: analysis of backscattered images in linearly polarized light, simulations and experiments,” in Optics and Optoelectronics, A. Kowalczyk, A. F. Fercher, and V. V. Turchin, eds. (SPIE, 2005), pp. 99-109.
  17. L. Wang, S. L. Jacques, and Z. Liqiong, “Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed. 47, 131-146 (1995). [CrossRef] [PubMed]
  18. F. Jaillon and H. Saint-Jalmes, “Description and time reduction of a Monte Carlo code to simulate propagation of polarized light through scattering media,” Appl. Opt. 42, 3290-3296 (2003). [CrossRef] [PubMed]
  19. A. Folkers and H. Samet, “Content-based image retrieval using Fourier descriptors on a logo database,” in 16th International Conference on Pattern Recognition, R. Kasturi, D. Laurendeau, and C. Suen, eds. (IEEE, 2002), p. 30521.
  20. O. Bertrand, R. Queval, and H. Maître, “Shape interpolation using Fourier descriptors with application to animation graphics,” Signal Processing 4, 53-58 (1982). [CrossRef]
  21. G. Saporta, Probabilités, Analyse des Données et Statistique (Editions Technip, 1990).
  22. H. Abdi, “Bonferroni and Sidak corrections for multiple comparisons,” in Encyclopedia of Measurement and Statistics, Sage, ed. (N. J. Salkind, 2007), pp. 103-107.
  23. R. C. Smith and K. S. Baker, “Optical properties of the clearest natural waters (200-800 nm),” Appl. Opt. 20, 177-184(1981). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited