OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: James C. Wyant
  • Vol. 47, Iss. 31 — Nov. 1, 2008
  • pp: 5848–5852

Double optical limiting in gold nanoshell: tuning from visible to infrared region by shell thickness

Jian Zhu  »View Author Affiliations


Applied Optics, Vol. 47, Issue 31, pp. 5848-5852 (2008)
http://dx.doi.org/10.1364/AO.47.005848


View Full Text Article

Enhanced HTML    Acrobat PDF (5493 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Because of surface plasmon resonance (SPR) induced nonlinear absorption, there are two optical limiting bands in gold nanoshells. The longer and shorter wavelength optical limiting bands correspond to the symmetric and antisymmetric coupling resonance absorption modes, respectively. Theoretical calculations based on quasi-static approximation show that the longer wavelength optical limiting band red shifts from the visible to the infrared region by decreasing the shell thickness. A mechanism based on polarization direction of a local electric field in a gold shell is investigated to describe the wavelength shift of the optical limiting band.

© 2008 Optical Society of America

OCIS Codes
(160.4330) Materials : Nonlinear optical materials
(190.4400) Nonlinear optics : Nonlinear optics, materials
(240.6680) Optics at surfaces : Surface plasmons

ToC Category:
Nonlinear Optics

History
Original Manuscript: July 17, 2008
Revised Manuscript: September 19, 2008
Manuscript Accepted: September 27, 2008
Published: October 28, 2008

Citation
Jian Zhu, "Double optical limiting in gold nanoshell: tuning from visible to infrared region by shell thickness," Appl. Opt. 47, 5848-5852 (2008)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-47-31-5848


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. Y. P. Sun, J. E. Riggs, H. W. Rollins, and R. Guduru, “Strong optical limiting of silver-containing nanocrystalline particles in stable suspensions,” J. Phys. Chem. B 103, 77-82 (1999). [CrossRef]
  2. B. Karthikeyan, M. Anija, C. S. Suchand Sandeep, T. M. Muhammad Nadeer, and R. Philip, “Optical and nonlinear optical properties of copper nanocomposite glasses annealed near the glass softening temperature,” Opt. Commun. 281, 2933-2937 (2008). [CrossRef]
  3. Y. Deng, Y. Y. Sun, P. Wang, D. G. Zhang, X. J. Jiao, H. Ming, Q. J. Zhang, Y. Jiao, and X. Q. Sun, “Nonlinear optical properties of silver colloidal solution by in situ synthesis technique,” Curr. Appl. Phys. 8, 13-17 (2008). [CrossRef]
  4. L. Irimpan, V. P. N. Nampoori, and P. Radhakrishnan, “Spectral and nonlinear optical characteristics of nanocomposites of ZnO-Ag,” Chem. Phys. Lett. 455, 265-269 (2008). [CrossRef]
  5. K. S. Lee and M. A. El-Sayed, “Dependence of the enhanced optical scattering efficiency relative to that of absorption for gold metal nanorods on aspect ratio, size, end-cap shape, and medium refractive index,” J. Phys. Chem. B 109, 20331-20338 (2005). [CrossRef]
  6. R. G. Ispasoiu, L. Balogh, O. P. Varnavski, D. A. Tomalia, and T. Goodson, “Large optical limiting from novel metal-dendrimer nanocomposite materials,” J. Am. Chem. Soc. 122, 11005-11006 (2000). [CrossRef]
  7. G. Wang and W. F. Sun, “Optical limiting of gold nanoparticle aggregates induced by electrolytes,” J. Phys. Chem. B 110, 20901-20905 (2006). [CrossRef] [PubMed]
  8. L. Francois, M. Mostafavi, J. Belloni, J. Delouis, J. Delaire, and P. Feneyrou, “Optical limitation induced by gold clusters l. Size effect,” J. Phys. Chem. B 104, 6133-6139 (2000). [CrossRef]
  9. Y. C. Gao, Q. Chang, H. G. Ye, W. Y. Jiao, Y. L. Li, Y. X. Wang, Y. L. Song, and D. B. Zhu, “Size effect of optical limiting in gold nanoparticles,” Chem. Phys. 336, 99-102 (2007). [CrossRef]
  10. A. S. Nair, V. Suryanarayanan, T. Pradeep, J. Thomas, M. Anija, and R. Philip, “AuxAgy@ZrO2 core-shell nanoparticles: synthesis, characterization, reactivity and optical limiting,” Mater. Sci. Eng. B 117, 173-182 (2005). [CrossRef]
  11. P. P. Kiran, B. N. S. Bhaktha, and D. N. Rao, “Nonlinear optical properties and surface-plasmon enhanced optical limiting in Ag--Cu nanoclusters co-doped in SiO2 sol-gel films,” J. Appl. Phys. 96, 6717-6723 (2004). [CrossRef]
  12. K. Tanabe, “Optical radiation efficiencies of metal nanoparticles for optoelectronic applications,” Mater. Lett. 61, 4573-4575 (2007). [CrossRef]
  13. J. Zhu, J. J. Li, J. W. Zhao, and S. W. Bai, “Light absorption efficiencies of gold nanoellipsoid at different resonance frequency,” J. Mater. Sci. 43, 5199-5205 (2008). [CrossRef]
  14. R. D. Averitt, S. L. Westcott, and N. J. Halas, “Linear optical properties of gold nanoshells,” J. Opt. Soc. Am. B 16, 1824-1832 (1999). [CrossRef]
  15. R. D. Averitt, D. Sarkar, and N. J. Halas, “Plasmon resonance shifts of Au-coated Au2S nanoshells: Insight into multicomponent nanoparticle growth,” Phys. Rev. Lett. 78, 4217-4220(1997). [CrossRef]
  16. U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer, 1995).
  17. S. L. Qu, Y. L. Song, H. F. Liu, Y. X. Wang, Y. C. Gao, S. T. Liu, X. R. Zhang, Y. L. Li, and D. B. Zhu, “A theoretical and experimental study on optical limiting in platinum nanoparticles,” Opt. Commun. 203, 283-288 (2002). [CrossRef]
  18. J. Zhu, “Theoretical study of the light scattering from gold nanotubes: Effects of wall thickness,” Mater. Sci. Eng. A 454-455, 685-689 (2007). [CrossRef]
  19. J. Zhu, “Local environment dependent line-width of plasmon absorption in gold nanoshell: Effects of local field polarization,” Appl. Phys. Lett. 92, 241919 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited