OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: James C. Wyant
  • Vol. 47, Iss. 31 — Nov. 1, 2008
  • pp: G105–G111

Detection sensitivity of laser-induced breakdown spectroscopy for Cr II in liquid samples

Nilesh K. Rai, Awadhesh K. Rai, Akshaya Kumar, and Surya N. Thakur  »View Author Affiliations

Applied Optics, Vol. 47, Issue 31, pp. G105-G111 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (2449 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The performance of laser-induced breakdown spectroscopy (LIBS) has been evaluated for detection of toxic metals such as Cr in water. Pure aqueous solutions (unitary matrix) with variable Cr concentration were used to construct calibration curves and to estimate the LIBS limit of detection (LOD). The calibration curves for Cr in a binary matrix (Cr plus Cd) and a tertiary matrix (Cr plus Cd and Co) were used to evaluate the matrix effect on the LOD. The LOD for Cr was found to be 1.1, 1.5, and 2.0 ppm (parts in 10 6 ) in a unitary, binary, and tertiary matrix, respectively. Once calibrated, the system was utilized for the detection and quantification of the Cr in tannery wastewater collected from different locations in the industrial area of Kanpur, India, where Cr concentrations were determined to be far higher than the U.S. Environmental Protection Agency safe drinking water limit of 0.05 ppm .

© 2008 Optical Society of America

OCIS Codes
(120.6200) Instrumentation, measurement, and metrology : Spectrometers and spectroscopic instrumentation
(140.3440) Lasers and laser optics : Laser-induced breakdown
(300.2140) Spectroscopy : Emission
(300.6360) Spectroscopy : Spectroscopy, laser
(350.5400) Other areas of optics : Plasmas

Original Manuscript: March 31, 2008
Revised Manuscript: July 18, 2008
Manuscript Accepted: July 23, 2008
Published: September 10, 2008

Nilesh K. Rai, Awadhesh K. Rai, Akshaya Kumar, and Surya N. Thakur, "Detection sensitivity of laser-induced breakdown spectroscopy for Cr II in liquid samples," Appl. Opt. 47, G105-G111 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. Gauglhofer and V. Bianchi, Metals and their Compounds in the Environment (VCH, 1991), pp. 1101-1126.
  2. F. J. Alguacil, A. López-Delgado, M. Alonso, and A. M. Sastre, “The phosphine oxides Cyanex 921 and Cyanex 923 as carriers for facilitated transport of chromium (VI)-chloride aqueous solutions,” Chemosphere 57, 813-819 (2004). [CrossRef] [PubMed]
  3. A. A. Mohamed, A. T. Mubarak, Z. M. H. Marstani, and K. F. Fawy, “A novel kinetic determination of dissolved chromium species in natural and industrial waste water,” Talanta 70, 460-467 (2006). [CrossRef]
  4. R. Güell, C. Fontàs, V. Salvadó, and E. Anticó, “Development of a selective optical sensor for Cr (VI) monitoring in polluted waters,” Anal. Chim. Acta 594, 162-168 (2007). [CrossRef] [PubMed]
  5. A. Ganguli and A. K. Tripathi, “Bioremediation of toxic chromium from electroplating effluent by chromate-reducing Pseudomonas aeruginosa A2Chr in two bioreactors,” Appl. Microbiol. Biotechnol. 58, 416-420 (2004).
  6. A. W. Miziolek, V. Palleschi, and I. Schechter, Laser Induced Breakdown Spectroscopy: Fundamentals and Applications (Cambridge U. Press, 2006). [CrossRef]
  7. C. Pasquini, J. Cortez, L. M. C. Silva, and F. B. Gonzaga, “Laser-induced breakdown spectroscopy,” J. Braz. Chem. Soc. 18, 463-512 (2007). [CrossRef]
  8. N. Tsuda and J. Yamada, “Study on laser induced plasma produced in liquid,” AIP Conf. Proc. 669, 400-403 (2003). [CrossRef]
  9. J. P. Singh and S. N. Thakur, Laser Induced Breakdown Spectroscopy (Elsevier Science, 2007).
  10. M. Sabsabi and P. Cielo, “Quantitative analysis of aluminum alloys by laser induced breakdown spectroscopy and plasma characterization,” Appl. Spectrosc. 49, 499-507 (1995). [CrossRef]
  11. S. Pandhija and A. K. Rai, “Screening of brick-kiln area soil for determination of heavy metal Pb using LIBS,” J. Environ. Monit. Assess. , online first DOI: 10.1007/s10661-008-0173-1. [CrossRef]
  12. S. Pandhija and A. K. Rai, “Laser induced breakdown spectroscopy: a versatile tool for monitoring of traces in materials,” Pramana 70, 553-563 (2008). [CrossRef]
  13. D. A. Cremers, L. J. Radziemski, and T. R. Loree, “Spectrochemical analyses of liquids using the laser spark,” Appl. Spectrosc. 38, 721-729 (1984). [CrossRef]
  14. F. Y. Yueh, R. C. Sharma, J. P. Singh, and H. Zhang, “Evaluation of potential of laser induced breakdown spectroscopy for detection of trace element in liquid,” J. Air Waste Manage. Assoc. 52, 1307-1315 (2002).
  15. C. Arca, A. Ciucci, V. Palleschi, S. Rastelli, and E. Tognoni, “Trace element analysis in water by laser induced breakdown spectroscopy technique,” Appl. Spectrosc. 51, 1102-1105 (1997). [CrossRef]
  16. J. Yamada and N. Tsuda, “Development behavior of plasma produced in liquid by YAG laser,” arXiv.org, arXiv:physics/0411069v1.
  17. T. Urakawa, N. Tsuda, and J. Yamada, “Study on breakdown threshold of liquid plasma produced by laser light,” Bull. Aichi Inst. Technol. Part B 38, 69-74 (2003).
  18. A. K. Rai, V. N. Rai, F. Yu. Yueh, and J. P. Singh, “Laser-induced breakdown spectroscopy: a versatile technique for elemental analysis,” Trends Appl. Spectrosc. 4, 165-214 (2002).
  19. D. C. S. Beddows, O. Samek, M. Liška, and H. H. Telle, “Single-pulse laser-induced breakdown spectroscopy of samples submerged in water using a single-fibre light delivery system,” Spectrochim. Acta Part B 57, 1461-1471 (2002). [CrossRef]
  20. O. Smaek, D. C. S. Beddows, J. Kaiser, S. V. Kukhlevsky, M. Liška, H. H. Telle, and J. Young, “Application of laser-induced breakdown spectroscopy to in situ analysis of liquid samples,” Opt. Eng. 39, 2248-2262 (2000). [CrossRef]
  21. N.K. Rai and A. K. Rai, “LIBS--an efficient approach for the determination of Cr in industrial wastewater,” J. Hazard. Mater. 150, 835-838 (2008). [CrossRef]
  22. J. P. Singh, F. Y. Yueh, H. Zang, and R. L. Cook, “Study of laser induced breakdown spectroscopy as a process monitor and control tool for hazardous waste,” Process Control Qual. 10, 247-258 (1997).
  23. S. G. Buckely, H. A. Johnsen, K. R. Hencken, and D. W. Hahn, “Inplementation of laser induced breakdown spectroscopy as a continuous emission monitor for toxic metal,” Waste Manage. 20, 455-462 (2000). [CrossRef]
  24. V. K. Singh, V. Rai, and A. K. Rai, “Variational study of the constituents of cholesterol stones by laser-induced breakdown spectroscopy,” Lasers Med. Sci. online first DOI: 10.1007/s10103-007-0516-0. [CrossRef] [PubMed]
  25. M. Corsi, G. Cristoforetti, M. Hidalgo, S. Legnaioli, V. Palleschi, A. Salvetti, E. Tognoni, and C. Vallebona, “Application of laser-induced breakdown spectroscopy technique to hair tissue mineral analysis,” Appl. Opt. 42, 6133-6137(2003). [CrossRef] [PubMed]
  26. A. Kumar, F. Y. Yueh, J. P. Singh, and S. Burgess, “Characterization of malignant tissue cells by laser--induced breakdown spectroscopy,” Appl. Opt. 43, 5399-5403 (2004). [CrossRef] [PubMed]
  27. K. Y. Yamamoto, D. A. Cremers, M. J. Ferris, and L. E. Foster, “Detection of metals in the environment using portable laser induced breakdown spectroscopy instrument,” Appl. Spectrosc. 50, 222-233 (1996).
  28. B. Bousquet, J. B. Sirven, and L. Canioni, “Towards quantitative laser-induced breakdown spectroscopy analysis of soil samples,” Spectrochim. Acta Part B 62, 1582-1589(2007). [CrossRef]
  29. L. M. Berman and P. J. Wolf, “Laser induced breakdown spectroscopy of liquids: aqueous solution of nickel and chlorinated hydrocarbon,” Appl. Spectrosc. 52, 438-443 (1998). [CrossRef]
  30. R. O. Esenaliev, A. A. Karabutov, N V. Podymova, and V. S. Letokhov, “Laser ablation of aqueous solutions with specially homogeneous and heterogeneous absorption,” Appl. Phys. B 59, 73-81 (1994). [CrossRef]
  31. A. De giacomo, M. Dell'aglio, and O. De pascale, “Single pulse-laser induced breakdown spectroscopy in aqueous solution,” Appl. Phys. A 79, 1035-1038 (2004). [CrossRef]
  32. P. Yaroshchyk, R. J. S. Morrison, D. Body, and B. L. Chadwick, “Theoretical modeling of optimal focusing conditions using laser-induced breakdown spectroscopy in liquid jets,” Appl. Spectrosc. 58, 1353-1359 (2004). [CrossRef]
  33. A. Kumar, F. Y. Yueh, T. Miller, and J. P. Singh, “Detection of trace elements in liquids by laser-induced breakdown spectroscopy with a Meinhard nebulizer,” Appl. Opt. 42, 6040-6046 (2003). [CrossRef] [PubMed]
  34. P. Yaroshchyk, R. J. S. Morrison, D. Body, and B. L. Chadwick, “Quantitative determination of wear metals in engine oils using LIBS : a comparison of liquid jets and static liquids,” Spectrochim. Acta Part B 60, 986-992 (2005). [CrossRef]
  35. A. A. Oraevsky, S. L. Jacques, and F. K. Tittel, “Mechanism of laser ablation for aqueous media irradiated under confined stress conditions,” J. Appl. Phys. 78, 1281-1290 (1995). [CrossRef]
  36. M. Kuzuya, H. Matsumoto, and H. Takechi, “Effect of laser energy on atmosphere on the emission characteristics of laser induced plasma,” Appl. Spectrosc. 47, 1659-1664(1993). [CrossRef]
  37. T. Yamaguchi, N. Tsuda, and J. Yamada, “Electron density measurement of laser induced plasma in liquid,” in Proceedings of the Sixth International Symposium of Applied Plasma Science (Institute of Applied Plasma Science, 2007).
  38. B. Charfi and M. A. Harith, “Panoramic laser-induced breakdown spectrometry of water,” Spectrochim. Acta Part B 57, 1141-1153 (2002). [CrossRef]
  39. A. S. Eppler, D. A. Cremers, D. D. Hickmott, M. J. Ferris, and A. C. Koskelo, “Matrix effects in the detection of Pb and Ba in Soils using laser-induced breakdown spectroscopy,” Appl. Spectrosc. 50, 1175-1181 (1996). [CrossRef]
  40. C. Chaléard, P. Mauchien, N. Andre, J. Uebbing, J. L. Lacour, and C. Geertsen, “Correction of matrix effects in quantitative elemental analysis with laser ablation optical emission spectrometry,” J. Anal. At. Spectrom. 12, 183-188 (1997). [CrossRef]
  41. H. J. Hakkanen and J. E. I. Korppi-Tommoka, “Laser-induced plasma emission spectrometric study of pigments and binders in paper coatings: matrix effects,” Anal. Chem 70, 4724-4729(1998). [CrossRef]
  42. S. I. Gornushkin, I. B. Gornushkin, J. M. Anzano, B. W. Smith, and J. D. Winefordner, “Effective normalization technique for correction of matrix effects in laser-induced breakdown spectroscopy detection of magnesium in powdered samples,” Appl. Spectrosc. 56, 433-436 (2002). [CrossRef]
  43. Google Maps, http://maps.google.com/maps?daddr=kanpur.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited