OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: James C. Wyant
  • Vol. 47, Iss. 31 — Nov. 1, 2008
  • pp: G122–G130

Single pulse laser-induced breakdown spectroscopy of bulk aqueous solutions at oceanic pressures: interrelationship of gate delay and pulse energy

Anna P. M. Michel and Alan D. Chave  »View Author Affiliations


Applied Optics, Vol. 47, Issue 31, pp. G122-G130 (2008)
http://dx.doi.org/10.1364/AO.47.00G122


View Full Text Article

Enhanced HTML    Acrobat PDF (11495 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The ability of oceanographers to make sustained measurements of ocean processes is limited by the number of available sensors for long-term in situ analysis. In recent years, laser-induced breakdown spectroscopy (LIBS) has been identified as a viable technique to develop into an oceanic chemical sensor. We performed single pulse laser-induced breakdown spectroscopy of high pressure bulk aqueous solutions to detect three analytes (sodium, manganese, and calcium) that are of key importance in hydrothermal vent fluids, an ocean environment that would greatly benefit from the development of an oceanic LIBS sensor. The interrelationship of the key experimental parameters, pulse energy and gate delay, for a range of pressures up to 2.76 × 10 7 Pa , is studied. A minimal effect of pressure on the peak intensity is observed. A short gate delay (less than 200 ns ) must be used at all pressures. The ability to use a relatively low laser pulse energy (less than 60 mJ ) for detection of analytes at high pressure is also established. Na, Mn, and Ca are detectable at pressures up to 2.76 × 10 7 Pa at 50, 500, and 50 ppm , respectively, using an Echelle spectrometer.

© 2008 Optical Society of America

OCIS Codes
(010.4450) Atmospheric and oceanic optics : Oceanic optics
(140.0140) Lasers and laser optics : Lasers and laser optics
(140.3440) Lasers and laser optics : Laser-induced breakdown
(300.0300) Spectroscopy : Spectroscopy
(300.6365) Spectroscopy : Spectroscopy, laser induced breakdown

History
Original Manuscript: March 31, 2008
Revised Manuscript: August 2, 2008
Manuscript Accepted: August 12, 2008
Published: September 19, 2008

Virtual Issues
Vol. 4, Iss. 1 Virtual Journal for Biomedical Optics

Citation
Anna P. M. Michel and Alan D. Chave, "Single pulse laser-induced breakdown spectroscopy of bulk aqueous solutions at oceanic pressures: interrelationship of gate delay and pulse energy," Appl. Opt. 47, G122-G130 (2008)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-47-31-G122


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. S. Harmon, F. C. DeLucia, C. E. McManus, N. J. McMillan, T. F. Jenkins, M. E. Walsh, and A. Miziolek, “Laser-induced breakdown spectroscopy--an emerging chemical sensor technology for real-time field-portable, geochemical, mineralogical, and environmental applications,” Appl. Geochem. 21, 730-747 (2006). [CrossRef]
  2. A. Bertolini, G. Carelli, F. Francesconi, M. Francesconi, L. Marchesini, P. Marsili, F. Sorrentino, G. Cristoforetti, S. Legnaioli, V. Palleschi, L. Pardini, and A. Salvetti, “Modi: a new mobile instrument for in situ double-pulse LIBS analysis,” Anal. Bioanal. Chem. 385, 240-247 (2006). [CrossRef] [PubMed]
  3. M. Corsi, G. Cristoforetti, M. Hidalgo, S. Legnaioli, V. Palleschi, A. Salvetti, E. Tognoni, and C. Vallebona, “Double pulse, calibration-free laser-induced breakdown spectroscopy: a new technique for in situ standard-less analysis of polluted soils,” Appl. Geochem. 21, 748-755 (2006). [CrossRef]
  4. S. Palanco, C. Lopez-Moreno, and J. J. Laserna, “Design, construction and assessment of a field-deployable laser-induced breakdown spectrometer for remote elemental sensing,” Spectrochim. Acta Part B 61, 88-95 (2006). [CrossRef]
  5. Z. A. Arp, D. A. Cremers, R. C. Wiens, D. M. Wayne, B. Sall, and S. Maurice, “Analysis of water ice and water ice/soil mixtures using laser-induced breakdown spectroscopy: application to Mars polar exploration,” Appl. Spectrosc. 58, 897-909 (2004). [CrossRef] [PubMed]
  6. Z. A. Arp, D. A. Cremers, R. D. Harris, D. M. Oschwald, G. R. Parker, Jr., and D. M. Wayne, “Feasibility of generating a useful laser-induced breakdown spectroscopy plasma on rocks at high pressure: preliminary study for a Venus mission,” Spectrochim. Acta Part B 59, 987-999 (2004). [CrossRef]
  7. G. B. Courrèges-Lacoste, B. Ahlers, and F. R. Pérez, “Combined Raman spectrometer/laser-induced breakdown spectrometer for the next ESA mission to Mars,” Spectrochim. Acta Part A 68, 1023-1028 (2007). [CrossRef]
  8. R. Brennetot, J. L. Lacour, E. Vors, A. Rivoallan, D. Vailhen, and S. Maurice, “Mars analysis by laser-induced breakdown spectroscopy (MALIS): Influence of Mars atmosphere on plasma emission and study of factors influencing plasma emission with the use of Doehlert designs,” Appl. Spectrosc. 57, 744-752 (2003). [CrossRef] [PubMed]
  9. A. Knight, N. Scherbarth, D. Cremers, and M. Ferris, “Characterization of laser-induced breakdown spectroscopy (LIBS) for application to space exploration,” Appl. Spectrosc. 54, 331-340 (2000). [CrossRef]
  10. B. Sallé, J.-L. Lacour, P. Mauchien, P. Fichet, S. Maurice, and G. Manhes, “Comparative study of different methodologies for quantitative rock analysis by laser-induced breakdown spectroscopy in a simulated Martian atmosphere,” Spectrochim. Acta Part B 61, 301-313 (2006). [CrossRef]
  11. A. P. M. Michel, M. Lawrence-Snyder, S. M. Angel, and A. D. Chave, “Laser-induced breakdown spectroscopy of bulk aqueous solutions at oceanic pressures: evaluation of key measurement parameters,” Appl. Opt. 46, 2507-2515(2007). [CrossRef] [PubMed]
  12. M. Lawrence-Snyder, J. Scaffidi, S. M. Angel, A. P. M. Michel, and A. D. Chave, “Sequential-pulse laser-induced breakdown spectroscopy of high-pressure bulk aqueous solutions,” Appl. Spectrosc. 61, 171-176 (2007). [CrossRef] [PubMed]
  13. M. Lawrence-Snyder, J. Scaffidi, S. M. Angel, A. P. M. Michel, and A. D. Chave, “Laser-induced breakdown spectroscopy of high-pressure bulk aqueous solutions,” Appl. Spectrosc. 60, 786-790 (2006). [CrossRef] [PubMed]
  14. C. R. German and K. L. Von Damm, “Hydrothermal processes,” in Treatise on Geochemistry, H. Elderfield, H. D. Holland, and K. K. Turekian, eds. (Elsevier, 2003), Vol. 6, pp. 181-222. [CrossRef]
  15. K. L. Von Damm, “Controls on the chemistry and temporal variability of seafloor hydrothermal fluids,” in Seafloor Hydrothermal Systems: Physical, Chemical, Biological, and Geological Interactions, Geophysical Monograph No. 91, S. Humphris, L. Mullineaux, R. Zierenberg, and R. Thomson, eds. (American Geophysical Union, 1995), pp. 222-249. [CrossRef]
  16. K. L. Von Damm, “Chemistry of hydrothermal vent fluids from 9°-10° N, East Pacific Rise: 'Time zero,' the immediate posteruptive period,” J. Geophys. Res. 105, 11203-11222 (2000). [CrossRef]
  17. D. A. Cremers, L. J. Radziemski, and T. R. Loree, “Spectrochemical analysis of liquids using the laser spark,” Appl. Spectrosc. 38, 721-729 (1984). [CrossRef]
  18. R. Knopp, F. J. Scherbaum, and J. I. Kim, “Laser induced breakdown spectroscopy (LIBS) as an analytical tool for the detection of metal ions in aqueous solutions,” Anal. Bioanal. Chem. 355, 16-20 (1996). [PubMed]
  19. W. Pearman, J. Scaffidi, and S. M. Angel, “Dual-pulse laser-induced breakdown spectroscopy in bulk aqueous solution with an orthogonal beam geometry,” Appl. Opt. 42, 6085-6093(2003). [CrossRef] [PubMed]
  20. A. De Giacomo, M. DellAglio, F. Colao, R. Fantoni, and V. Lazic, “Double-pulse LIBS in bulk water and on submerged bronze samples,” Appl. Surf. Sci. 247, 157-162 (2005). [CrossRef]
  21. A. E. Pichahchy, D. A. Cremers, and M. J. Ferris, “Elemental analysis of metals under water using laser-induced breakdown spectroscopy,” Spectrochim. Acta Part B 52, 25-39 (1997). [CrossRef]
  22. C. Haisch, J. Liermann, U. Panne, and R. Niessner, “Characterization of colloidal particles by laser-induced plasma spectroscopy (LIPS),” Anal. Chim. Acta 346, 23-25 (1997). [CrossRef]
  23. P. K. Kennedy, D. X. Hammer, and B. A. Rockwell, “Laser-induced breakdown in aqueous media,” Prog. Quantum Electron. 21, 155-248 (1997). [CrossRef]
  24. R. Noll, “Terms and notations for laser-induced breakdown spectroscopy,” Anal. Bioanal. Chem. 385, 214-218 (2006). [CrossRef] [PubMed]
  25. A. P. M. Michel and A. D. Chave, “Analysis of laser-induced breakdown spectroscopy spectra: the case for extreme value statistics,” Spectrochim. Acta Part B 62, 1370-1378 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited