OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: James C. Wyant
  • Vol. 47, Iss. 31 — Nov. 1, 2008
  • pp: G131–G143

Double pulse laser-induced breakdown spectroscopy of bulk aqueous solutions at oceanic pressures: interrelationship of gate delay, pulse energies, interpulse delay, and pressure

Anna P. M. Michel and Alan D. Chave  »View Author Affiliations


Applied Optics, Vol. 47, Issue 31, pp. G131-G143 (2008)
http://dx.doi.org/10.1364/AO.47.00G131


View Full Text Article

Enhanced HTML    Acrobat PDF (2956 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Laser-induced breakdown spectroscopy (LIBS) has been identified as an analytical chemistry technique suitable for field use. We use double pulse LIBS to detect five analytes (sodium, manganese, calcium, magnesium, and potassium) that are of key importance in understanding the chemistry of deep ocean hydrothermal vent fluids as well as mixtures of vent fluids and seawater. The high pressure aqueous environment of the deep ocean is simulated in the laboratory, and the key double pulse experimental parameters (laser pulse energies, gate delay time, and interpulse delay time) are studied at pressures up to 2.76 × 10 7 Pa . Each element is found to have a unique optimal set of parameters for detection. For all pressures and energies, a short ( 100 ns ) gate delay is necessary. As pressure increases, a shorter interpulse delay is needed and the double pulse conditions effectively become single pulse for both the 1.38 × 10 7 Pa and the 2.76 × 10 7 Pa conditions tested. Calibration curves reveal the limits of detection of the elements ( 5000 ppm Mg , 500 ppm K , 500 ppm Ca , 1000 ppm Mn , and 50 ppm Na ) in aqueous solutions at 2.76 × 10 7 Pa for the experimental setup used. When compared to our previous single pulse LIBS work for Ca, Mn, and Na, the use of double pulse LIBS for analyte detection in high pressure aqueous solutions did not improve the limits of detection.

© 2008 Optical Society of America

OCIS Codes
(010.4450) Atmospheric and oceanic optics : Oceanic optics
(140.0140) Lasers and laser optics : Lasers and laser optics
(140.3440) Lasers and laser optics : Laser-induced breakdown
(300.0300) Spectroscopy : Spectroscopy
(300.6365) Spectroscopy : Spectroscopy, laser induced breakdown

History
Original Manuscript: March 31, 2008
Manuscript Accepted: June 6, 2008
Published: September 19, 2008

Virtual Issues
Vol. 4, Iss. 1 Virtual Journal for Biomedical Optics

Citation
Anna P. M. Michel and Alan D. Chave, "Double pulse laser-induced breakdown spectroscopy of bulk aqueous solutions at oceanic pressures: interrelationship of gate delay, pulse energies, interpulse delay, and pressure," Appl. Opt. 47, G131-G143 (2008)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-47-31-G131


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. S. Harmon, F. C. DeLucia, C. E. McManus, N. J. McMillan, T. F. Jenkins, M. E. Walsh, and A. Miziolek., “Laser-induced breakdown spectroscopy--an emerging chemical sensor technology for real-time field-portable, geochemical, mineralogical, and environmental applications,” Appl. Geochem. 21, 730-747 (2006). [CrossRef]
  2. Z. A. Arp, D. A. Cremers, R. C. Wiens, D. M. Wayne, B. Sallé, and S. Maurice, “Analysis of water ice and water ice/soil mixtures using laser-induced breakdown spectroscopy: application to Mars polar exploration.,” Appl. Spectrosc. 58, 897-909(2004). [CrossRef] [PubMed]
  3. Z. A. Arp, D. A. Cremers, R. D. Harris, D. M. Oschwald, G. R. Parker Jr., and D. M. Wayne, “Feasibility of generating a useful laser-induced breakdown spectroscopy plasma on rocks at high pressure: preliminary study for a Venus mission,” Spectrochim. Acta Part B 59, 987-999 (2004). [CrossRef]
  4. G. B. Courrèges-Lacoste, B. Ahlers, and F. R. Pérez, “Combined Raman spectrometer/laser-induced breakdown spectrometer for the next ESA mission to Mars,” Spectrochim. Acta Part A 68, 1023-1028 (2007). [CrossRef]
  5. R. Brennetot, J. L. Lacour, E. Vors, A. Rivoallan, D. Vailhen, and S. Maurice, “Mars analysis by laser-induced breakdown spectroscopy (MALIS): influence of Mars atmosphere on plasma emission and study of factors influencing plasma emission with the use of Doehlert designs,” Appl. Spectrosc. 57, 744-752 (2003). [CrossRef] [PubMed]
  6. A. Knight, N. Scherbarth, D. Cremers, and M. Ferris, “Characterization of laser-induced breakdown spectroscopy (LIBS) for application to space exploration.,” Appl. Spectrosc. 54, 331-340 (2000). [CrossRef]
  7. B. Sallé, J.-L. Lacour, P. Mauchien, P. Fichet, S. Maurice, and G. Manhes, “Comparative study of different methodologies for quantitative rock analysis by laser-induced breakdown spectroscopy in a simulated Martian atmosphere,” Spectrochim. Acta Part B 61, 301-313 (2006). [CrossRef]
  8. C. R. German and K. L. Von Damm, “Hydrothermal processes,” in Treatise on Geochemistry, H. Elderfield, H. D. Holland, and K. K. Turekian, eds. (Elsevier, 2003), Vol. 6, pp. 181-222. [CrossRef]
  9. J. H. Trefry, D. B. Butterfield, S. Metz, G. J. Massoth, R. P. Trocine, and R. A. Feely, “Trace metals in hydrothermal solutions from Cleft segment on the southern Juan de Fuca Ridge,” J. Geophys. Res. 99, 4925-4935 (1994). [CrossRef]
  10. K. L. Von Damm, “Controls on the chemistry and temporal variability of seafloor hydrothermal fluids,” in Seafloor Hydrothermal Systems: Physical, Chemical, Biological, and Geological Interactions, Geophysical Monograph No. 91, S. Humphris, L. Mullineaux, R. Zierenberg, and R. Thomson, eds. (American Geophysical Union, 1995), pp. 222-247. [CrossRef]
  11. K. L. Von Damm. “Chemistry of hydrothermal vent fluids from 9°-10° N, East Pacific Rise: 'Time zero,' the immediate posteruptive period,” J. Geophys. Res. 105, 11203-11222(2000). [CrossRef]
  12. D. A. Cremers, L. J. Radziemski, and T. R. Loree, “Spectrochemical analysis of liquids using the laser spark,” Appl. Spectrosc. 38, 721-729 (1984). [CrossRef]
  13. R. Knopp, F. J. Scherbaum, and J. I. Kim, Laser induced breakdown spectroscopy (LIBS) as an analytical tool for the detection of metal ions in aqueous solutions,” Anal. Bioanal. Chem. 355, 16-20 (1996). [PubMed]
  14. W. Pearman, J. Scaffidi, and S. M. Angel, “Dual-pulse laser-induced breakdown spectroscopy in bulk aqueous solution with an orthogonal beam geometry,” Appl. Opt. 42, 6085-6093(2003). [CrossRef] [PubMed]
  15. A. P. M. Michel, M. Lawrence-Snyder, S. M. Angel, and A. D. Chave, “Laser-induced breakdown spectroscopy of bulk aqueous solutions at oceanic pressures: evaluation of key measurement parameters,” Appl. Opt. 46, 2507-2515 (2007). [CrossRef] [PubMed]
  16. M. Lawrence-Snyder, J. Scaffidi, S. M. Angel, A. P. M. Michel, and A. D. Chave, “Sequential-pulse laser-induced breakdown spectroscopy of high-pressure bulk aqueous solutions,” Appl. Spectrosc. 61, 171-176 (2007). [CrossRef] [PubMed]
  17. M. Lawrence-Snyder, J. Scaffidi, S. M. Angel, A. P. M. Michel, and A. D. Chave, “Laser-induced breakdown spectroscopy of high-pressure bulk aqueous solutions,” Appl. Spectrosc. 60, 786-790 (2006). [CrossRef] [PubMed]
  18. A. De Giacomo, M. DellAglio, F. Colao, R. Fantoni, and V. Lazic, “Double-pulse LIBS in bulk water and on submerged bronze samples,” Appl. Surf. Sci. 247, 157-162 (2005). [CrossRef]
  19. A. P. M. Michel and A. D. Chave, “Single pulse laser-induced breakdown spectroscopy of bulk aqueous solutions at oceanic pressures: interrelationship of gate delay and pulse energy,” Appl. Opt. 47, G122-G130 (2008). [CrossRef]
  20. A. E. Pichahchy, D. A. Cremers, and M. J. Ferris, “Elemental analysis of metals under water using laser-induced breakdown spectroscopy,” Spectrochimica Acta Part B 52, 25-39(1997). [CrossRef]
  21. C. Haisch, J. Liermann, U. Panne, and R. Niessner, “Characterization of colloidal particles by laser-induced plasma spectroscopy (LIPS),” Anal. Chim. Acta 346, 23-25 (1997). [CrossRef]
  22. P. K. Kennedy, D. X. Hammer, and B. A. Rockwell, “Laser-induced breakdown in aqueous media,” Prog. Quantum Electron. 21, 155-248 (1997). [CrossRef]
  23. A. De Giacomo, M. Dell'Aglio, and O. De Pascale, “Single pulse-laser induced breakdown spectroscopy in aqueous solution,” Appl. Phys. A 79, 1035-1038 (2004). [CrossRef]
  24. A. De Giacomo, M. Dell'Aglio, O. De Pascale, and M. Capitelli, “From single pulse to double pulse ns-laser induced breakdown spectroscopy under water: elemental analysis of aqueous solutions and submerged solid samples,” Spectrochim. Acta Part B 62, 721-738 (2007). [CrossRef]
  25. A. Casavola, A. De Giacomo, M. Dell'Aglio, F. Taccogna, G. Colonna, O. De Pascale, and S. Longo,” Experimental investigation and modelling of double pulse laser induced plasma spectroscopy under water,” Spectrochim. Acta Part B 60, 975-985 (2005). [CrossRef]
  26. A. De Giacomo, M. Dell'Aglio, F. Colao, and R. Fantoni, “Double pulse laser produced plasma on metallic target in seawater: basic aspects and analytical approach,” Spectrochim. Acta B 59, 1431-1438 (2004). [CrossRef]
  27. S. Koch, R. Court, W. Garen, W. Neu, and R. Reuter, “Detection of manganese in solution in cavitation bubbles using laser induced breakdown spectroscopy,” Spectrochim. Acta Part B 60, 1230-1235 (2005). [CrossRef]
  28. V. Lazic, F. Colao, R. Fantoni, and V. Spizzicchino, “Laser-induced breakdown spectroscopy in water: improvement of the detection threshold by signal processing,” Spectrochim. Acta Part B 60, 1002-1013 (2005). [CrossRef]
  29. R. Noll, “Terms and notations for laser-induced breakdown spectroscopy,” Anal. Bioanal. Chem. 385, 214-218 (2006). [CrossRef] [PubMed]
  30. A. P. M. Michel and A. D. Chave, “Analysis of laser-induced breakdown spectroscopy spectra: the case for extreme value statistics,” Spectrochim. Acta Part B 62, 1370-1378(2007). [CrossRef]
  31. M. Lawrence-Snyder, J. P. Scaffidi, W. F. Pearman, and S. M. Angel, “Dependence of emission intensity on bubble dynamics in dual-pulse laser-induced breakdown spectroscopy of high-pressure bulk aqueous solutions,” submitted to Appl. Spectrosc.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited