OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: James C. Wyant
  • Vol. 47, Iss. 31 — Nov. 1, 2008
  • pp: G144–G148

Laser-induced breakdown spectroscopy measurement in methane and biodiesel flames using an ungated detector

Kemal E. Eseller, Fang Y. Yueh, and Jagdish P. Singh  »View Author Affiliations

Applied Optics, Vol. 47, Issue 31, pp. G144-G148 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (740 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Laser-induced breakdown spectroscopy (LIBS) has been applied to measure the equivalence ratio of CH 4 / air flames using gated detection. In this work, we have developed an ungated, miniature LIBS-based sensor for studying CH 4 / air and biodiesel flames. We have used this sensor to characterize the biodiesel flame. LIBS spectra of biodiesel flames were recorded with different ethanol concentrations in the biodiesel and also at different axial locations within the flame. The sensor performance was evaluated with a CH 4 / air flame. LIBS signals of N, O, and H from a CH 4 / air flame were used to determine the equivalence ratio. A linear relationship between the intensity ratio of H and O lines and the calculated equivalence ratio were obtained with this sensor.

© 2008 Optical Society of America

OCIS Codes
(020.0020) Atomic and molecular physics : Atomic and molecular physics
(120.6200) Instrumentation, measurement, and metrology : Spectrometers and spectroscopic instrumentation
(140.3440) Lasers and laser optics : Laser-induced breakdown
(300.0300) Spectroscopy : Spectroscopy
(300.6210) Spectroscopy : Spectroscopy, atomic
(350.5400) Other areas of optics : Plasmas

Original Manuscript: April 14, 2008
Revised Manuscript: September 3, 2008
Manuscript Accepted: September 4, 2008
Published: September 30, 2008

Kemal E. Eseller, Fang Y. Yueh, and Jagdish P. Singh, "Laser-induced breakdown spectroscopy measurement in methane and biodiesel flames using an ungated detector," Appl. Opt. 47, G144-G148 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Miziolek, V. Palleschi, and I. Schechter, Laser-Induced Breakdown Spectroscopy (LIBS): Fundamentals and Applications (Cambridge U. Press, 2006). [CrossRef]
  2. J. P. Singh and S. N. Thakur, Laser-Induced Breakdown Spectroscopy (Elsevier, 2007).
  3. D. Cremers and L. J. Radziemski Handbook of Laser-Induced Breakdown Spectroscopy (Wiley, 2007).
  4. D. A. Rusak, B. C. Castle, B. W. Smith, and J. D. Winefordner, “Fundamentals and applications of laser-induced breakdown spectroscopy,” Crit. Rev. Anal. Chem. 27, 257-290 (1997). [CrossRef]
  5. H. Zhang, F. Y. Yueh, and J. P. Singh, “Laser-induced breakdown spectroscopy as a multi-metal continuous- emission monitor,” Appl. Opt. 38, 1459-1466 (1999). [CrossRef]
  6. D. W. Hahn, W. L. Flower, and K. R. Henken, “Discrete particle detection and metal emission monitoring using laser induced breakdown spectroscopy,” Appl. Spectrosc. 51, 1836-1844(1997). [CrossRef]
  7. H. Zhang, J. P. Singh, F. Y. Yueh, and R. L. Cook, “Laser-induced breakdown spectra in a coal-fired MHD facility,” Appl. Spectrosc. 49, 1617-1623 (1995). [CrossRef]
  8. A. Michalakou, P. Stavropoulos, and S. Couris, “Laser-induced breakdown spectroscopy in reactive flows of hydrocarbon-air mixtures,” Appl. Phys. Lett. 92, 081501 (2008). [CrossRef]
  9. D. A. Cremers and L. J. Radziemski, “Detection of chlorine and fluorine in air by laser-induced breakdown spectrometry,” Anal. Chem. 55, 1252-1256 (1983). [CrossRef]
  10. L. J. Radziemski, T. R. Loree, D. A. Cremers, and N. M. Hoffman, “Time-resolved laser-induced breakdown spectrometry of aerosols,” Anal. Chem. 55, 1246-1252 (1983). [CrossRef]
  11. J. P. Singh, H. Zhang, F. Y. Yueh, and K. P. Carney, “Investigation of the effects of atmospheric conditions on the quantification of metal hydrides using laser induced breakdown spectroscopy,” Appl. Spectrosc. 50, 764-773 (1996). [CrossRef]
  12. T. W. Lee and N. Hegde, “Laser-induced breakdown spectroscopy for in situ diagnostics of combustion parameters including temperature,” Combust. Flame 142, 314-316 (2005). [CrossRef]
  13. K. K. Hoinghaus and J. B. Jeffries, Applied Combustion Diagnostics (Taylor & Francis, 2002).
  14. S. Einecke, C. Schulz, and V. Sick, “Measurement of temperature, fuel concentration and equivalence ratio fields using tracer LIF in IC engine combustion,” Appl. Phys. B 71, 717-723 (2000). [CrossRef]
  15. L. Ma, S. T. Sanders, J. B. Jeffries, and R. K. Hanson, “Monitoring and control of a pulse detonation engine using a diode-laser fuel concentration and temperature sensor,” Proc. Combust. Inst. 29, 161-163 (2003). [CrossRef]
  16. F. Ferioli, P. V. Puzinauskas, and S. G. Buckley, “Laser-induced breakdown spectroscopy for on-line engine equivalence ratio measurements,” Appl. Spectrosc. 57, 1183-1189 (2003). [CrossRef] [PubMed]
  17. F. Ferioli and S. G. Buckley, “Measurements of hydrocarbons using laser-induced breakdown spectroscopy,” Combust. Flame 144, 435-447 (2006). [CrossRef]
  18. T. X. Phuoc and F. P. White, “Laser induced spark for measurements of the fuel-to-air ratio of a combustible mixture,” Fuel 81, 1761-1765 (2002). [CrossRef]
  19. P. Stavropoulos, A. Michalakou, G. Skevis, and S. Couris, “Laser-induced breakdown spectroscopy as an analytical tool for equivalence ratio measurement in methane-air premixed flames,” Spectrochim. Acta B 60, 1092-1097 (2005). [CrossRef]
  20. P. Stavropoulos, A. Michalakou, G. Skevis, and S. Couris, “Quantitative local equivalence ratio determination in laminar premixed methane-air flames by laser induced breakdown spectroscopy (LIBS),” Chem. Phys. Lett. 404, 309-314 (2005). [CrossRef]
  21. L. Zimmer and S. Tachibana, “Laser induced plasma spectroscopy for local equivalence ratio measurements in an oscillating combustion environment,” Proc. Combust. Inst. 31, 737-745 (2007). [CrossRef]
  22. X. Lu, J. Ma, L. Ji, and Z. Huang, “Experimental study on the combustion characteristics and emissions of biodiesel fueled compression ignition engines with premixed dimethoxymethane,” Energy Fuels 21, 3144-3150 (2007). [CrossRef]
  23. M. P. P. Castro, A. A. Andrade, R. W. A. Franco, P. C. M. L. Miranda, M. Sthel, H. Vargas, R. Constantino, and M. L. Baesso, “Thermal properties measurements in biodiesel oils using photothermal techniques,” Chem. Phys. Lett. 411, 18-22(2005). [CrossRef]
  24. C. Y. Lin and H. A. Lin, “Diesel engine performance and emission characteristics of biodiesel produced by the peroxidation process,” Fuel 85, 298-305 (2006). [CrossRef]
  25. N. M. Ribeiro, A. C. Pinto, C. M. Quintella, G. O. da Rocha, O. S. G. Teixeira, L. L. N. Guarieiro, M. do C. Rangel, M. C. C. Veloso, M. J. C. Rezende, R. S. Cruz, A. M. de Oliveira, E. A. Torres, and J. B. de Andrade, “The role of additives for diesel and diesel blended (ethanol or biodiesel) fuels: a review,” Energy Fuels 21, 2433-2445 (2007). [CrossRef]
  26. A. G. Gaydon and H. G. Wolfhard, Flames: Their Structure, Radiation and Temperature, 3rd ed. (Chapman & Hall, 1970).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited