OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: James C. Wyant
  • Vol. 47, Iss. 31 — Nov. 1, 2008
  • pp: G21–G29

Time-dependent single and double pulse laser-induced breakdown spectroscopy of chromium in liquid

Virendra N. Rai, Fang Yu Yueh, and Jagdish P. Singh  »View Author Affiliations


Applied Optics, Vol. 47, Issue 31, pp. G21-G29 (2008)
http://dx.doi.org/10.1364/AO.47.000G21


View Full Text Article

Enhanced HTML    Acrobat PDF (655 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A study of aqueous solutions of chromium using single and double pulse laser-induced breakdown spectroscopy (LIBS) is presented. Three atomic emission lines show enhancement in emission under dual pulse LIBS excitation. The temporal evolution of line emission indicates that a shock wave front produced by the first laser pulse plays an important role in determining the decay rate of intensity by excitation transfer in single pulse LIBS and by plasma confinement in double pulse LIBS. The ratio of emission in dual pulse LIBS to single pulse LIBS with time shows a linear increase followed by the onset of saturation. A theoretical calculation of the enhancement is found to be in qualitative agreement with the experimental results, suggesting that material ablation in dual pulse LIBS should be 3.5 times that of single pulse LIBS. There is indication that the increase in ablation and subsequent enhancement in emission may be due to the rarefied gas density inside the region enclosed by the shock wave produced by the first laser pulse. The limit of detection of Cr in aqueous solution has been improved by an order of magnitude with double pulse LIBS.

© 2008 Optical Society of America

OCIS Codes
(140.3440) Lasers and laser optics : Laser-induced breakdown
(300.0300) Spectroscopy : Spectroscopy
(300.2140) Spectroscopy : Emission
(300.6210) Spectroscopy : Spectroscopy, atomic
(350.5400) Other areas of optics : Plasmas
(300.6365) Spectroscopy : Spectroscopy, laser induced breakdown

History
Original Manuscript: April 3, 2008
Manuscript Accepted: June 6, 2008
Published: August 6, 2008

Citation
Virendra N. Rai, Fang Yu Yueh, and Jagdish P. Singh, "Time-dependent single and double pulse laser-induced breakdown spectroscopy of chromium in liquid," Appl. Opt. 47, G21-G29 (2008)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-47-31-G21


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. L. J. Radziemski and D. A. Cremers, eds., Laser Induced Plasma and Its Applications (Marcel Dekker, 1989).
  2. A. W. Miziolek, V. Palleschi, and I. Schechter, eds., Laser Induced Breakdown Spectroscopy (Cambridge Press, 2006). [CrossRef]
  3. J. P. Singh and S. N. Thakur, eds., Laser Induced Breakdown Spectroscopy (Elsevier, 2007).
  4. D. A. Rusak, B. C. Castle, B. W. Smith, and J. D. Winefordner, “Fundamentals and applications of laser induced breakdown spectroscopy,” Crit. Rev. Anal. Chem. 27, 257-290 (1997). [CrossRef]
  5. K. Song, Y. I. Lee, and J. Sneddon, “Applications of laser-induced breakdown spectrometry,” Appl. Spectrosc. Rev. 32, 183-235 (1997). [CrossRef]
  6. J. P. Singh, F. Y. Yueh, H. Zhang, and K. P. Karney, “A preliminary study of the determination of uranium, plutonium and neptunium by laser induced breakdown spectroscopy,” Recent Res. Dev. Appl. Spectrosc. 2, 59-67 (1999).
  7. O. Samek, D. C. S. Beddows, J. Kaiser, S. V. Kukhlevsky, M. Liska, H. H. Telle, and J. Young, “Application of laser induced breakdown spectroscopy to in situ analysis of liquid samples,” Opt. Eng. 39, 2248-2262 (2000). [CrossRef]
  8. V. N. Rai, A. K. Rai, F. Y. Yueh, and J. P. Singh, “Optical emission from laser induced breakdown plasma of solid and liquid samples in the presence of magnetic field,” Appl. Opt. 42, 2085-2093 (2003). [CrossRef] [PubMed]
  9. M. Martin and M. D. Cheng, “Detection of chromium aerosol using time resolved laser-induced plasma spectroscopy,” Appl. Spectrosc. 54, 1279-1285 (2000). [CrossRef]
  10. J. Uebbing, J. Brust, W. Sdorra, F. Leis, and K. Niemax, “Reheating of a laser produced plasma by a second pulse laser,” Appl. Spectrosc. 45, 1419-1423 (1991). [CrossRef]
  11. D. N. Stratis, K. L. Eland, and S. M. Angel, “Dual-pulse LIBS using a pre-ablation spark for enhanced ablation and emission,” Appl. Spectrosc. 54, 1270-1274 (2000). [CrossRef]
  12. D. N. Stratis, K. L. Eland, and J. M. Angel, “Effect of pulse delay time on a pre-ablation dual pulse LIBS plasma,” Appl. Spectrosc. 55, 1297-1303 (2001). [CrossRef]
  13. R. Sattmann, V. Sturm, and R. Noll, “Laser induced breakdown spectroscopy of steel samples using multiple Q-switch Nd:YAG laser pulses,” J. Phys. D 28, 2181-2187 (1995). [CrossRef]
  14. F. Colao, V. Lazic, R. Fantoni, and S. Pershin, “A comparison of single and double pulse laser induced breakdown spectroscopy of aluminum samples,” Spectrochim. Acta Part B 57, 1167-1179 (2002). [CrossRef]
  15. A. Kuwako, Y. Uchida, and K. Maeda, “Supersensitive detection of sodium in water with the use of dual pulse laser induced breakdown spectroscopy,” Appl. Opt. 42, 6052-6056(2003). [CrossRef] [PubMed]
  16. V. N. Rai, F. Y. Yueh, and J. P. Singh, “Study of laser induced breakdown emission from liquid under double pulse excitation,” Appl. Opt. 42, 2085-2093 (2003). [CrossRef] [PubMed]
  17. C. Gautier, P. Fichet, D. Menut, J. L. Lacour, D. L'Hermite, and J. Dubessy, “Quantification of the intensity enhancement for the double pulse laser induced breakdown spectroscopy in the orthogonal beam geometry,” Spectrochim. Acta Part B 60, 265-276 (2005). [CrossRef]
  18. C. Gauthier, P. Fichet, D. Menut, J. L. Lacour, D. L'Hermite, and J. Dubessy, “Study of the double pulse setup with an orthogonal beam geometry for laser induced breakdown spectroscopy,” Spectrochim. Acta Part B 59, 975-986 (2004). [CrossRef]
  19. L. St-Onge, V. Deale, and M. Assai, “Enhanced laser induced breakdown spectroscopy using the combination of fourth-harmonics and fundamental Nd:YAG laser pulses,” Spectrochim. Acta Part B 57, 121-135 (2002). [CrossRef]
  20. J. Scaffidi, S. M. Angel, and D. A. Cremers, “Emission enhancement mechanisms in dual-pulse LIBS,” Anal. Chem. 78, 24-32(2006). [CrossRef] [PubMed]
  21. X. Mao, X. Zeng, S. B. Wen, and R. E. Russo, “Time-resolved plasma properties for double pulsed laser induced breakdown spectroscopy of silicon,” Spectrochim. Acta Part B 60, 960-967(2005). [CrossRef]
  22. V. I. Babushok, F. C. DeLucia, Jr., J. L. Gottfried, C. A. Munson, and A. W. Miziolek, “Double pulse laser ablation and plasma: Laser induced breakdown spectroscopy signal enhancement,” Spectrochim. Acta Part B 61, 999-1014(2006). [CrossRef]
  23. A. De Giacomo, M. Dell'Aglio, O. De Pascale, and M. Capetelli, “From single pulse to double pulse ns laser induced breakdown spectroscopy under water: Elemental analysis of aqueous solutions and submerged solid samples,” Spectrochim. Acta Part B 62, 721-738 (2007). [CrossRef]
  24. L. Peter, V. Sturm, and R. Noll, “Liquid steel analysis with laser-induced breakdown spectrometry in the vacuum ultraviolet,” Appl. Opt. 42, 6199-6204 (2003). [CrossRef] [PubMed]
  25. V. Sturm, L. Peter, and R. Noll, “Steel analysis with laser induced breakdown spectroscopy in the vacuum ultraviolet,” Appl. Spectrosc. 54, 1275-1278 (2000). [CrossRef]
  26. M. Stepputat and R. Noll, “Online detection of heavy metals and brominated flame retardants in technical polymers with laser-induced breakdown spectroscopy,” Appl. Opt. 42, 6210-6220 (2003). [CrossRef] [PubMed]
  27. X. Y. Pu and N. H. Cheung, “ArF laser induced plasma spectroscopy of lead ions in aqueous solutions: plume reheating with a second Nd:YAG laser pulse,” Appl. Spectrosc. 57, 588-590(2003). [CrossRef] [PubMed]
  28. X. Y. Pu, W. Y. Ma, and N. H. Cheung, “Sensitive elemental analysis of aqueous colloids by laser-induced plasma spectroscopy,” Appl. Phys. Lett. 83, 3416-3418 (2003). [CrossRef]
  29. S. K. Ho and N. H. Cheung, “Sub-part-per-billion analysis of aqueous lead collides by ArF laser induced atomic fluorescence,” Anal. Chem. 77, 193-199 (2005). [CrossRef]
  30. W. Pearman, J. Scaffidi, and S. M. Angel, “Dual pulse laser-induced breakdown spectroscopy in bulk aqueous solution with orthogonal beam geometry,” Appl. Opt. 42, 6085-6093(2003). [CrossRef] [PubMed]
  31. M. Corsi, G. Cristoforetti, M. Giuffrida, M. Hidalgo, S. Legnaioli, V. Palleschi, A. Salvetti, E. Tognoni, and C. Vallebona, “Three dimensional analysis of laser induced plasmas in single and double pulse configuration,” Spectrochim. Acta Part B 59, 723-735 (2004). [CrossRef]
  32. A. A. Lamola and N. J. Turro, eds., Energy Transfer and Organic Photochemistry (Interscience, 1969).
  33. V. N. Rai, F. Y. Yueh, and J. P. Singh, “Theoretical model for double pulse laser-induced breakdown spectroscopy,” Appl. Opt. 47, G30-G37 (2008). [CrossRef]
  34. P. A. Benedetti, G. Cristoforetti, S. Legnaioli, V. Palleschi, L. Pardini, A. Salvetti, and E. Togoni, “Effect of laser pulse energies in laser-induced breakdown spectroscopy in double pulse configuration,” Spectrochim. Acta Part B 60, 1392-1401 (2005). [CrossRef]
  35. J. R. Ho, C. P. Grigoropoulos, and J. A. C. Humphrey, “Computational study of heat transfer and gas dynamics in the pulsed laser evaporation of metals,” J. Appl. Phys. 78, 4696-4708 (1995). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited