OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: James C. Wyant
  • Vol. 47, Iss. 31 — Nov. 1, 2008
  • pp: G30–G37

Theoretical model for double pulse laser-induced breakdown spectroscopy

Virendra N. Rai, Fang Yu Yueh, and Jagdish P. Singh  »View Author Affiliations


Applied Optics, Vol. 47, Issue 31, pp. G30-G37 (2008)
http://dx.doi.org/10.1364/AO.47.000G30


View Full Text Article

Enhanced HTML    Acrobat PDF (741 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present a simple theoretical model for the emission from double pulse laser-induced plasmas that was developed to better understand the processes and factors involved in enhancement of plasma emission. In this model, the plasma emission is directly proportional to the square of plasma density, its volume, and the fraction of second laser pulse absorbed through inverse bremsstrahlung absorption by the plasma plume of the first laser pulse. The electron–ion collision frequency determines the profile and location of the peak of emission enhancement with respect to the delay between the two lasers, whereas the amplitude of the enhancement is mainly dependent on the increase in the mass ablation rate after the second laser pulse. The effects of increase in temperature and in plasma volume after the second laser pulse are also discussed in light of this model.

© 2008 Optical Society of America

OCIS Codes
(140.3440) Lasers and laser optics : Laser-induced breakdown
(300.0300) Spectroscopy : Spectroscopy
(300.2140) Spectroscopy : Emission
(300.6210) Spectroscopy : Spectroscopy, atomic
(350.5400) Other areas of optics : Plasmas
(300.6365) Spectroscopy : Spectroscopy, laser induced breakdown

History
Original Manuscript: April 3, 2008
Manuscript Accepted: June 6, 2008
Published: August 6, 2008

Citation
Virendra N. Rai, Fang Yu Yueh, and Jagdish P. Singh, "Theoretical model for double pulse laser-induced breakdown spectroscopy," Appl. Opt. 47, G30-G37 (2008)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-47-31-G30


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. P. Singh and S. N. Thakur, Laser-Induced Breakdown Spectroscopy (Elsevier, 2007), Chap. 6.
  2. V. I. Babushok, F. C. De Lucia, Jr., J. L. Gottfried, C. A. Munson, and A. W. Miziolek, “Double pulse laser ablation and plasma: laser induced breakdown spectroscopy signal enhancement,” Spectrochim. Acta Part B 61, 999-1014 (2006). [CrossRef]
  3. A. De Giacomo, M. Dell'Aglio, O. De Pascale, and M. Capitelli, “From single pulse to double pulse ns-laser induced breakdown spectroscopy under water: elemental analysis of aqueous solutions and submerged solid samples,” Spectrochim. Acta Part B 62, 721-738 (2007). [CrossRef]
  4. E. H. Piepmeier and H. V. Malmstadt, “Q-switched laser energy absorption in the plume of an aluminum alloy,” Anal. Chem. 41, 700-707 (1969). [CrossRef]
  5. R. H. Scott and A. Strasheim, “Laser-induced plasmas for analytical spectroscopy,” Spectrochim. Acta Part B 25, 311-332(1970). [CrossRef]
  6. D. A. Cremers, L. J. Radziamski, and T. R. Loree, “Spectrochemical analysis of liquids using the laser spark,” Appl. Spectrosc. 38, 721-729 (1984). [CrossRef]
  7. R. Noll, R. Sattamann, V. Sturm, and S. Winkelmann, “Space- and time-resolved dynamics of plasma generated by laser double pulses interacting with metallic samples,” J. Anal. At. Spectrom. 19, 419-428 (2004). [CrossRef]
  8. V. N. Rai, F. Y. Yueh, and J. P. Singh, “Study of laser-induced breakdown emission from liquid under double pulse excitation,” Appl. Opt. 42, 2085-2093 (2003). [CrossRef] [PubMed]
  9. P. Mukherjee, S. Chen, and S. Witanachchi, “Effect of initial plasma geometry and temperature on dynamics of plume expansion in dual laser ablation,” Appl. Phys. Lett. 74, 1546-1548 (1999). [CrossRef]
  10. S. M. Angel, D. N. Stratis, K. L. Eland, T. LaiM. A. Berg, and D. M. Gold, “LIBS using dual- and ultra-short laser pulses,” Fresenius J. Anal. Chem. 369, 320-327 (2001). [CrossRef] [PubMed]
  11. X. Mao, X. Zeng, S. B. Wen, and R. E. Russo, “Time-resolved plasma properties for double pulsed laser-induced breakdown spectroscopy of silicon,” Spectrochim. Acta Part B 60, 960-967 (2005). [CrossRef]
  12. F. Colao, V. Lazic, R. Fantoni, and S. Pershin, “A comparison of single and double pulse laser-induced breakdown spectroscopy of aluminum samples,” Spectrochim. Acta Part B 57, 1167-1179 (2002). [CrossRef]
  13. L. St-Onge, M. Sabsabi, and P. Cielo, “Analysis of solids using laser-induced plasma spectroscopy in double-pulse mode,” Spectrochim. Acta Part B 53, 407-415 (1998). [CrossRef]
  14. J. Scaffidi, W. Pearman, M. Lawrence, J. C. Carter, B. W. Colston, Jr., and S. M. Angel, “Spatial and temporal dependence of inter spark interaction in femtosecond-nanosecond dual-pulse laser-induced breakdown spectroscopy,” Appl. Opt. 43, 5243-5250 (2004). [CrossRef] [PubMed]
  15. M. Corsi, G. Cristoforetti, M. Giuffrida, M. Hidalgo, S. Legnaioli, V. Palleschi, A. Salvetti, E. Tognoni, and C. Vallebona, “Three-dimensional analysis of laser induced plasma in single and double pulse configuration,” Spectrochim. Acta Part B 59, 723-735 (2004). [CrossRef]
  16. G. Cristoforetti, S. Legnaioli, P. Pardini, V. Palleschi, A. Salvetti, and E. Tognoni, “Spectroscoic and shadowgraphic analysis of laser-induced plasmas in the orthogonal double pulse pre ablation configuration,” Spectrochim. Acta Part B 61, 340-350 (2006). [CrossRef]
  17. D. N. Stratis, K. L. Eland, and S. M. Angel, “Enhancement of aluminum, titanium and iron in glass using pre-ablation spark dual pulse LIBS,” Appl. Spectrosc. 54, 1719-1726(2000). [CrossRef]
  18. D. N. Stratis, K. L. Eland, and S. M. Angel, “Dual pulse LIBS using a pre ablation spark for enhanced ablation and emission,” Appl. Spectrosc. 54, 1270-1274 (2000). [CrossRef]
  19. D. N. Stratis, K. L. Eland, and S. M. Angel, “Effect of pulse delay time on a pre-ablation dual pulse LIBS plasma,” Appl. Spectrosc. 55, 1297-1303 (2001). [CrossRef]
  20. C. E. Max, “Physics of the coronal plasma in laser fusion targets,” in Laser Plasma Interaction, R. Balian and J. C. Adams, eds. (North-Holland, 1982).
  21. J. A. Bittencourt, Fundamentals of Plasma Physics (Pergamon, 1986).
  22. A. C. Forsman, P. S. Banks, M. D. Perry, E. M. Campbell, A. L. Dodell, and M. S. Armas, “Double pulse machining as a technique for the enhancement of material removal rates in laser machining of metals,” J. Appl. Phys. 98, 033302(2005). [CrossRef]
  23. J. Uebbing, J. Brust, W. Sdorra, F. Leis, and K. Niemax, “Reheating of laser produced plasma by a second pulse laser,” Appl. Spectrosc. 45, 1419-1423 (1991). [CrossRef]
  24. A. Kuwako, Y. Uchida, and K. Maeda, “Supersensitive detection of sodium in water with the use of dual pulse laser-induced breakdown spectroscopy,” Appl. Opt. 42, 6052-6056(2003). [CrossRef] [PubMed]
  25. V. S. Burako, A. F. Bukhonov, M. I. Nedel'ko, N. A. Savastenko, and N. V. Tarasenko, “Optical emission characteristics of carbon plasma produced by single and double pulse laser ablation,” in Proceedings of International Conference on Phenomena in Ionized Gases, J. Meichsner, D. Loffhagen, H. E. Wagner, eds. (Greifswald, 2003), Vol. 4, pp. 207-208.
  26. V. N. Rai, F. Y. Yueh, and J. P. Singh, “Optical emission from laser-produced chromium and magnesium plasma under the effect of two sequential laser pulses,” Pramana, J. Phys. 65, 1075-1083 (2005). [CrossRef]
  27. P. A. Benedetti, G. Cristoforetti, S. Legnaioli, V. Palleschi, L. Pardini, A. Salvetti, and E. Tognoni, “Effect of laser pulse energies in laser-induced breakdown spectroscopy in double-pulse configuration,” Spectrochim. Acta Part B 60, 1392-1401 (2005). [CrossRef]
  28. E. Koudoumas, M. Spyridaki, R. Stoian, A. Rosenfeld, P. Tzanetakis, I. V. Hertel, and C. Fotakis, “Influence of pulse temporal manipulation on the properties of laser ablated Si ion beams,” Thin Solid Films 453-454, 372-376(2004). [CrossRef]
  29. M. Spyridaki, E. Koudoumas, P. Tzanetakis, C. Fotakis, R. Stoian, A. Rosenfeld, and I. V. Hertel, “Temporal pulse manipulation and ion generation in ultra fast laser ablation of silicon,” Appl. Phys. Lett. 83, 1474-1476 (2003). [CrossRef]
  30. R. Stoian, M. Boyle, A. Thoss, A Rosenfeld, G. Kom, I. V. Hertel, and E. E. B. Campbell, “Laser ablation of dielectrics with temporally shaped femtosecond pulses,” Appl. Phys. Lett. 80, 353-355 (2002). [CrossRef]
  31. J. Gonzalez, C. Liu, J. Yoo, X. Mao, and R. E. Russo, “Double-pulse laser ablation inductively coupled plasma mass spectrometry,” Spectrochim. Acta Part B 60, 27-31(2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited