OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: James C. Wyant
  • Vol. 47, Iss. 31 — Nov. 1, 2008
  • pp: G38–G47

Quantitative analysis of gallstones using laser-induced breakdown spectroscopy

Vivek K. Singh, Vinita Singh, Awadhesh K. Rai, Surya N. Thakur, Pradeep K. Rai, and Jagdish P. Singh  »View Author Affiliations


Applied Optics, Vol. 47, Issue 31, pp. G38-G47 (2008)
http://dx.doi.org/10.1364/AO.47.000G38


View Full Text Article

Enhanced HTML    Acrobat PDF (6317 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The utility of laser-induced breakdown spectroscopy (LIBS) for categorizing different types of gallbladder stone has been demonstrated by analyzing their major and minor constituents. LIBS spectra of three types of gallstone have been recorded in the 200 900 nm spectral region. Calcium is found to be the major element in all types of gallbladder stone. The spectrophotometric method has been used to classify the stones. A calibration-free LIBS method has been used for the quantitative analysis of metal elements, and the results have been compared with those obtained from inductively coupled plasma atomic emission spectroscopy (ICP-AES) measurements. The single-shot LIBS spectra from different points on the cross section (in steps of 0.5 mm from one end to the other) of gallstones have also been recorded to study the variation of constituents from the center to the surface. The presence of different metal elements and their possible role in gallstone formation is discussed.

© 2008 Optical Society of America

OCIS Codes
(120.6200) Instrumentation, measurement, and metrology : Spectrometers and spectroscopic instrumentation
(140.3440) Lasers and laser optics : Laser-induced breakdown
(300.0300) Spectroscopy : Spectroscopy
(300.2140) Spectroscopy : Emission
(300.6210) Spectroscopy : Spectroscopy, atomic
(350.5400) Other areas of optics : Plasmas

History
Original Manuscript: April 2, 2008
Revised Manuscript: July 4, 2008
Manuscript Accepted: July 7, 2008
Published: August 13, 2008

Citation
Vivek K. Singh, Vinita Singh, Awadhesh K. Rai, Surya N. Thakur, Pradeep K. Rai, and Jagdish P. Singh, "Quantitative analysis of gallstones using laser-induced breakdown spectroscopy," Appl. Opt. 47, G38-G47 (2008)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-47-31-G38


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. Agarwal and V. R. Singh, “Ultrasonic parameters and relationship between compressive strength, microstructure of gallbladder stones,” Eur. J. Ultrasound 11, 143-146 (2000). [CrossRef] [PubMed]
  2. O. Kleiner, J. Ramesh, M. Huleihel, B. Cohen, K. Kantarovich, C. Levi, B. Polyak, R. S. Marks, J. Mordehai, Z. Cohen, and S. Mordechai, “A comparative study of gallstones from children and adults using FTIR spectroscopy and fluorescence microscopy,” BioMed Central: BMC Gastroenterology 2, 3 (2002). [CrossRef]
  3. G. Liu, D. Xing, H. Yang, and J. Wu, “Vibrational spectroscopic study of human pigment gallstones and their insoluble materials,” J. Mol. Struct. 616, 187-191 (2002). [CrossRef]
  4. P. F. Malet, M. A. Dabezies, G. Huang, W. B. Long, T. R. Gadacz, and R. D. Soloway, “Quantitative infrared spectroscopy of common bile duct gallstones,” Gastroenterology 94, 1217-1221 (1988). [PubMed]
  5. U. Wosiewitz, “Scanning electron microscopy in gallstone research,” Scanning Electron Microsc. Part 1, 419-430 (1983).
  6. M. Tabata and F. Nakayama, “Bacteria and gallstones: etiological significance,” Dig. Dis. Sci. 26, 218-224 (1981). [CrossRef] [PubMed]
  7. N. Suzuki, Y. Nakamura, and T. Sato, “Infrared absorption spectroscopy of pure pigment gallstones,” Tohoku J. Exp. Med. 116, 259-265 (1975). [CrossRef] [PubMed]
  8. T. Maki, “Pathogenesis of calcium bilirubinate gallstones: role of E. coli, β-glucuronidase and coagulation by inorganic ions, polyelectrolytes and agitation,” Ann. Surg. 164, 90-100(1966). [CrossRef] [PubMed]
  9. T. Kodaka, T. Sano, K. Nakagawa, J. Kakino, and R. Mori, “Structural and analytical comparison of gallbladder stones collected from a single patient: studies of five cases,” Med. Electron Microsc. 37, 130-140 (2004). [CrossRef] [PubMed]
  10. A. T. Al-Kinani, I. A. Harris, and D. E. Watt, “Analysis of minor and trace elements in gallstones by induction of characteristic ionizing radiation,” Phys. Med. Biol. 29, 175-184 (1984). [CrossRef] [PubMed]
  11. C. Paluszkiewicz, M. Galka, W. Kwiatek, A. Parczewski, and S. Walls, “Renal stone studies using vibrational spectroscopy and trace elemental analysis,” Biospectroscopy 3, 403-407(1997). [CrossRef]
  12. A. Rodges, L. Barbour, B. Pougnet, C. Lombard, and R. Ryall, “Urinary element concentrations in kidney stone formers and normal controls: the weekend effect,” J. Trace Elem. Electrolytes Health Dis. 8, 87-91 (1994).
  13. C. Koeberl and P. M. Bayer, “Concentrations of rare earth elements in human brain tissue and kidney stones determined by neutron activation analysis,” J. Alloys Compd. 180, 63-70(1992). [CrossRef]
  14. J. Joost and R. Tessadri, “Trace element investigations in kidney stone patients,” Eur. Urol. 13, 264-270 (1987). [PubMed]
  15. X. Fang, S. R. Ahmad, M. Mayo, and S. Iqbal, “Elemental analysis of urinary calculi by laser induced plasma spectroscopy,” Lasers Med. Sci. 20, 132-137 (2005). [CrossRef] [PubMed]
  16. H. Perk, T. A. Serel, A. Kobar, N. Deniz, and A. Sayin, “Analysis of the trace element contents of inner nucleus and outer crust parts of urinary calculi,” Urol. Int. 68, 286-290 (2002). [CrossRef] [PubMed]
  17. W. R. Premasiri, R. H. Clarke, and M. E. Womble, “Urine analysis by laser Raman spectroscopy,” Laser Surg. Med. 28, 330-334 (2001). [CrossRef]
  18. J. Hofbauer, I. Steffan, K. Hobarth, G. Vujicic, H. Schwetz, G. Reich, and O. Zechner, “Trace elements and urinary stone information: new aspects of the pathological mechanism of urinary stone formation [Erratum],” J. Urol. 148, 898-901(1992).
  19. P. Chandran, P. Garg, and C. S. Pundir, “Correlation between chemical components of biliary calculi and bile & sera and bile of gallstone patients,” Ind. J. Clin. Biochem. 20, 81-85 (2005). [CrossRef]
  20. J. Salimi, K. Moosavi, and S. Vatankhah, “The concentration of heavy trace elements in pigment and cholesterol human gallstones: comparative studies by PIXE analysis,” Iran. J. Radiat. Res. 1, 93-97 (2003).
  21. I. Yamamoto, M. Itoh, S. Narimatsu, N. Suzuki, R. Demura, N. Kotani, and S. Tsukada, “Determination of metal content in three types of human gallstone,” Bull. Environ. Contam. Toxicol. 42, 1-8 (1989). [CrossRef] [PubMed]
  22. A. Kumar, F. Y. Yueh, J. P. Singh, and S. Burgess, “Characterization of malignant tissue cells by laser-induced breakdown spectroscopy,” Appl. Opt. 43, 5399-5403 (2004). [CrossRef] [PubMed]
  23. C. Pasquini, J. Cortez, L. M. C. Silva, and F. B. Gonzaga, “Laser induced breakdown spectroscopy,” J. Braz. Chem. Soc. 18, 463-512 (2007). [CrossRef]
  24. J. P. Singh and S. N. Thakur, Laser Induced Breakdown Spectroscopy (Elsevier Science, 2007).
  25. A. K. Rai, V. N. Rai, F. Yu. Yueh, and J. P. Singh, “Laser-induced breakdown spectroscopy: a versatile technique for elemental analysis,” Trends Appl. Spectrosc. 4, 165-214 (2002).
  26. A. W. Miziolek, V. Palleschi, and I. Schechter, Laser Induced Breakdown Spectroscopy: Fundamentals and Applications (Cambridge U. Press, 2006). [CrossRef]
  27. M. Corsi, G. Cristoforetti, M. Hidalgo, S. Legnaioli, V. Palleschi, A. Salvetti, E. Tognoni, and C. Vallebona, “Application of laser-induced breakdown spectroscopy technique to hair tissue mineral analysis,” Appl. Opt. 42, 6133-6137 (2003). [CrossRef] [PubMed]
  28. A. Ciucci, M. Corsi, V. Palleschi, V. Rastelli, A. Salvetti, and E. Tognoni, “A new procedure for quantitative elemental analyses by laser-induced plasma spectroscopy,” Appl. Spectrosc. 53, 960-964 (1999). [CrossRef]
  29. D. Bulajic, M. Corsi, G. Cristoforetti, S. Legnaioli, V. Palleschi, A. Salvetti, and E. Tognoni, “A procedure for correcting self-absorption in calibration-free laser induced breakdown spectroscopy,” Spectrochim. Acta Part B 57, 339-353 (2002). [CrossRef]
  30. I. Borgia, L. Burgio, M. Corsi, R. Fantoni, V. Palleschi, A. Salvetti, M. C. Squarcialupi, and E. Tognoni, “Self-calibrated quantitative elemental analysis by laser-induced plasma spectroscopy: application to pigment analysis,” J. Cultural Heritage 1, S281-S286 (2000). [CrossRef]
  31. V. S. Burakov, V. V. Kiris, P. A. Naumenkov, and S. N. Raikov, “Calibration-free laser spectral analysis of glasses and copper alloys,” J. Appl. Spectrosc. 71, 740-746 (2004). [CrossRef]
  32. M. Corsi, V. Palleschi, A. Salvetti, and E. Tognoni, “Calibration free laser induced plasma spectroscopy: a new method for combustion products analysis,” Clean Air 3, 69-79 (2002). [CrossRef]
  33. O. Barthélemy, J. Margot, S. Laville, F. Vidol, M. Chaker, B. L. Drogoff, T. W. Johnston, and M. Sabsabi, “Investigation of the state of local thermodynamic equilibrium of a laser-produced aluminum plasma,” Appl. Spectrosc. 59, 529-536(2005). [CrossRef] [PubMed]
  34. F. Colao, R. Fantoni, V. Lazic, A. Paolini, F. Fabbri, G. G. Ori, L. Marinangeli, and A. Baliva, “Investigation of LIBS feasibility for in situ planetary exploration: an analysis on Martian rock analogues,” Planet. Space Sci. 52, 117-123 (2004). [CrossRef]
  35. L. Fornarini, F. Colao, R. Fantoni, V. Lazic, and V. Spizzicchino, “Calibration analysis of bronze samples by nanosecond laser induced breakdown spectroscopy: a theoretical and experimental approach,” Spectrochim. Acta Part B 60, 1186-1201 (2005). [CrossRef]
  36. B. Sallé, J. L. Lacour, P. Mauchien, P. Fichet, S. Maurice, and G. Manhes, “Comparative study of different methodologies for quantitative rock analysis by laser-induced breakdown spectroscopy in a simulated Martian atmosphere,” Spectrochim. Acta Part B 61, 301-313 (2006). [CrossRef]
  37. E. Tognoni, G. Cristoforetti, S. Legnaioli, V. Palleschi, A. Salvetti, M. Mueller, U. Panne, and I. Gornushkin, “A numerical study of expected accuracy and precision in calibration-free laser-induced breakdown spectroscopy in the assumption of ideal analytical plasma,” Spectrochim. Acta Part B 62, 1287-1302 (2007). [CrossRef]
  38. V. K. Singh, V. Rai, and A. K. Rai, “Variational study of the constituents of cholesterol stones by laser-induced breakdown spectroscopy,” Lasers Med. Sci. DOI: 10.1007/s10103-007-0516-0. [CrossRef] [PubMed]
  39. A. K. Rai, F. Y. Yueh, J. P. Singh, and D. K. Rai, “Laser induced breakdown spectroscopy for solid and molten materials,” in Laser Induced Breakdown Spectroscopy, J.P.Singh and S.N.Thakur, ed. (Elsevier, 2007), pp. 255-284. [CrossRef]
  40. S. Pandhija and A. K. Rai, “Screening of brick-kiln area soil for determination of heavy metal Pb using LIBS,” Environ. Monit. Assess. DOI: 10.1007/s10661-008-0173-1. [CrossRef] [PubMed]
  41. S. Pandhija and A. K. Rai, “Laser induced breakdown spectroscopy: a versatile tool for monitoring of traces in materials,” Pramana J. Phys. 70, 553-563 (2008). [CrossRef]
  42. N. K. Rai and A. K. Rai, “LIBS--an efficient approach for the determination of Cr in industrial wastewater,” J. Hazard. Mater. 150, 835-838 (2008). [CrossRef]
  43. R. A. Berhoft, C. A. Pellegrini, R. W. Motson, and L. W. Way, “Composition and morphologic and clinical features of common duct stones,” Am. J. Surg. 148, 77-85(1984). [CrossRef]
  44. B. W. Trotman, J. D. Ostrow, and R. D. Soloway, “Pigment vs. cholesterol cholelithiasis: comparison of stone and bile composition,” Am. J. Dig. Dis. 19, 585-590 (1974). [CrossRef] [PubMed]
  45. J. S. Wel, H. M. Huang, W. C. Shyu, and C. S. Wu, “Simple enzymatic determination of total cholesterol in gallstones,” Clin. Chem. 35, 2247-2249 (1989).
  46. N. Suzuki, Y. Nakamura, N. Kobayashi, and T. Sato, “On metal elements in pure pigment gallstones,” Tohoku J. Exp. Med. 116, 233-240 (1975). [CrossRef] [PubMed]
  47. Q. Peng, J. G. Wu, R. D. Soloway, T. D. Hu, W. D. Huang, Y. Z. Xu, L. B. Wang, X. F. Li, W. H. Li, D. F. Xu, and G. X. Xu, “Periodic and chaotic precipitation phenomena in bile salt system related to gallstone formation,” Biospectroscopy 3, 195-205 (1997). [CrossRef]
  48. J. M. Donovan, “Physical and metabolic factors in gallstone pathogenesis,” Gastroenterol. Clin. North Am. 28, 75-97(1999). [CrossRef] [PubMed]
  49. NIST Atomic Spectra Database, http://physics.nist.gov/PhysRefData/ASD/lines_form.html.
  50. H. R. Griem, Plasma Spectroscopy (McGraw-Hill, 1964).
  51. W. H. Li, G. R. Shen, R. D. Soloway, Z.-L. Yang, X.-B. Tong , E. Wu , D.-F. Xu, J. G. Wu, and G.-X. Xu, “Copper bilirubinate and black pigment gallstone,” Biospectroscopy 1, 149-156(1995). [CrossRef]
  52. W. Chua-anusorn, T. G. St. Pierre, J. Webb, K. Wang, and J. F. Lu, “The form of iron in pigment gallstones,” Hyperfine Interact. 91, 911-916 (1994). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited