OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: James C. Wyant
  • Vol. 47, Iss. 31 — Nov. 1, 2008
  • pp: G65–G71

Dynamics of laser-ablated carbon plasma: formation of C 2 and CN

Archana Kushwaha and R. K. Thareja  »View Author Affiliations

Applied Optics, Vol. 47, Issue 31, pp. G65-G71 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (10560 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report time-resolved imaging of a laser-ablated carbon plasma plume to investigate the expansion dynamics of C 2 and CN in an ambient atmosphere of nitrogen gas at various pressures. An attempt is made to locate C 2 and CN species in the carbon plasma plume and correlate them with the results of spectroscopic observations. The ablated C 2 and CN species decelerate due to collisions with nitrogen gas and are localized in the slower part ( 300 ns ) of the expanding plume. Further expansion ( < 700 ns ) of the plasma reveals the concentration of C 2 species on the periphery of the plume, whereas CN dominates at the core of the plume. However, at times greater than 700 ns , the collisions and recombination processes dominate in the plume and C 2 expands slower than CN. The plume dynamics is studied in terms of shock-wave and drag models.

© 2008 Optical Society of America

OCIS Codes
(170.6920) Medical optics and biotechnology : Time-resolved imaging
(300.6500) Spectroscopy : Spectroscopy, time-resolved
(280.5395) Remote sensing and sensors : Plasma diagnostics

Original Manuscript: November 20, 2007
Revised Manuscript: July 14, 2008
Manuscript Accepted: July 17, 2008
Published: September 1, 2008

Archana Kushwaha and R. K. Thareja, "Dynamics of laser-ablated carbon plasma: formation of C2 and CN," Appl. Opt. 47, G65-G71 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. L. J. Radziemski and D. A. Cremers, Laser-Induced Plasmas and Applications (Marcel Dekker, 1989).
  2. A. W. Miziolek, V. Palleschi, and I. Schechter, Laser Induced Breakdown Spectroscopy (LIBS), Fundamentals and Applications (Cambridge University Press, 2006). [CrossRef]
  3. P. S. R. Prasad, Abhilasha, and R. K. Thareja, “Fullerenes from laser produced plasma,” Phys. Status Solidi A 139, K1-K5 (1993). [CrossRef]
  4. R. K. Dwivedi and R. K. Thareja, “Optical emission diagnostics of C60-containing laser-ablated plumes for carbon film deposition,” Phys. Rev. B 51, 7160-7167 (1995). [CrossRef]
  5. A. A. Voevodin, J. G. Jones, and J. S. Zabinski, “Plasma characterization during laser ablation of graphite in nitrogen for the growth of fullerene-like CNx films,” J. Appl. Phys. 92, 724-735 (2002). [CrossRef]
  6. X. Chen, J. Mazumder, and A. Purohit, “Optical emission diagnostics of laser-induced plasma for diamond-like film deposition,” Appl. Phys. A 52, 328-334 (1991). [CrossRef]
  7. S. Amoruso, R. Bruzzese, N. Spinelli, and R. Velotta, “Characterization of laser-ablation plasmas,” J. Phys. B 32, R131-R172 (1999). [CrossRef]
  8. S. S. Harilal, “Expansion dynamics of laser-ablated carbon plasma plume in helium ambient,” Appl. Surf. Sci. 172, 103-109 (2001). [CrossRef]
  9. S. M. Park and J. Y. Moon, “Laser ablation of graphite in an oxygen jet,” J. Chem. Phys. 109, 8124-8129 (1998). [CrossRef]
  10. C. Dutouquet and J. Hermann, “Laser-induced fluorescence probing during pulsed-laser ablation for three-dimensional number density mapping of plasma species,” J. Phys. D 34, 3356-3363 (2001). [CrossRef]
  11. T. Ikegami, S. Ishibashi, Y. Yamagata, K. Ebihara, R. K. Thareja, and J. Narayan, “Spatial distribution of carbon species in laser ablation of graphite target,” J. Vac. Sci. Technol. A 19, 1304-1307 (2001). [CrossRef]
  12. R. K. Dwivedi, S. P. Singh, and R. K. Thareja, “Ion probe diagnostics of laser ablated plumes for thin carbon films deposition,” Int. J. Mod. Phys. B 12, 2619-2633 (1998). [CrossRef]
  13. S. H. Jeong, R. Greif, and R. E. Russo, “Shock wave and material vapour plume propagation during excimer laser ablation of aluminium samples,” J. Phys. D 32, 2578-2785 (1999). [CrossRef]
  14. A. K. Sharma and R. K. Thareja, “Characterization of laser-produced aluminum plasma in ambient atmosphere of nitrogen using fast photography,” Appl. Phys. Lett. 84, 4490-4492(2004). [CrossRef]
  15. D. Doria, K. D. Kavanagh, J. T. Costello, and H. Luna, “Plasma parameterization by analysis of time-resolved laser plasma image spectra,” Meas. Sci. Technol. 17, 670-674 (2006). [CrossRef]
  16. V. Bulatov, L. Xu, and I. Schechter, “Spectroscopic imaging of laser-induced plasma,” Anal. Chem. 68, 2966-2973 (1996). [CrossRef] [PubMed]
  17. J. E. M. Goldsmith and R. J. M. Anderson, “Laser-induced fluorescence spectroscopy and imaging of molecular oxygen in flames,” Opt. Lett. 11, 67-69 (1986). [CrossRef] [PubMed]
  18. U. Westblom and M. Alden, “Simultaneous multiple species detection in a flame using laser-induced fluorescence: errata,” Appl. Opt. 29, 4844-4851 (1990). [CrossRef] [PubMed]
  19. R. Cubeddu, D. Comelli, C. D'Andrea, P. Taroni, and G. Valentini, “Time-resolved fluorescence imaging in biology and medicine,” J. Phys. D 35, R61-R76 (2002). [CrossRef]
  20. D. Comelli, C. D'Andrea, G. Valentini, R. Cubeddu, C. Colombo, and L. Toniolo, “Fluorescence lifetime imaging and spectroscopy as tools for nondestructive analysis of works of art,” Appl. Opt. 43, 2175-2183 (2004). [CrossRef] [PubMed]
  21. F. Kokai, K. Takahashi, K. Shimizu, M. Yudasaka, and S. Iijima, “Shadowgraphic and emission imaging spectroscopic studies of the laser ablation of graphite in an Ar gas atmosphere,” Appl. Phys. A 69, S223-S227 (1999). [CrossRef]
  22. A. Misra and R. K. Thareja, “Investigation of laser ablated plumes using fast photography,” IEEE Trans. Plasma Sci. 27, 1553-1558 (1999). [CrossRef]
  23. D. B. Geohegan, “Physics and diagnostics of laser ablation plume propagation for high-T, superconductor film growth,” Thin Solid Films 220, 138-145 (1992). [CrossRef]
  24. R. Noll, R. Sattmann, V. Sturm, and S. Winkelmann, “Space- and time-resolved dynamics of plasmas generated by laser double pulses interacting with metallic samples,” J. Anal. At. Spectrom. 19, 419-428 (2004). [CrossRef]
  25. R. F. Wood, K. R. Chen, J. N. Leboeuf, A. A. Puretzky, and D. B. Geohegan, “Dynamics of plume propagation and splitting during pulsed-laser ablation,” Phys. Rev. Lett. 79, 1571-1574 (1997). [CrossRef]
  26. S. S. Harilal, C. V. Bindhu, M. S. Tillack, F. Najmabadi, and A. C. Gaeris, “Internal structure and expansion dynamics of laser ablation plumes into ambient gases,” J. Appl. Phys. 93, 2380-2388 (2003). [CrossRef]
  27. A. K. Sharma and R. K. Thareja, “Plume dynamics of laser-produced aluminum plasma in ambient nitrogen,” Appl. Surf. Sci. 243, 68-75 (2005). [CrossRef]
  28. D. B. Geohegan, “Fast intensified-CCD photography of YBa2Cu3O7−x laser ablation in vacuum and ambient oxygen,” Appl. Phys. Lett. 60, 2732-2734 (1992). [CrossRef]
  29. D. B. Geohegan and A. A. Puretzky, “Dynamics of laser ablation plume penetration through low pressure background gases,” Appl. Phys. Lett. 67, 197-199 (1995). [CrossRef]
  30. K. R. Chen, J. N. Leboeuf, R. F. Wood, D. B. Geohegan, J. M. Donato, C. L. Liu, and A. A. Puretzky, “Mechanisms affecting kinetic energies of laser-ablated materials,” J. Vac. Sci. Technol. A 14, 1111-1114 (1996). [CrossRef]
  31. S. S. Harilal, C. V. Bindhu, M. S. Tillack, F. Najmabadi, and A. C. Gaeris, “Plume splitting and sharpening in laser-produced aluminium plasma,” J. Phys. D 35, 2935-2938(2002). [CrossRef]
  32. H. R. Griem, Principles of Plasma Spectroscopy (Cambridge, 1964).
  33. S. Abdelli-Messaci, T. Kerdja, A. Bendib, and S. Malek, “Emission study of C2 and CN in laser-created carbon plasma under nitrogen environment,” J. Phys. D 35, 2772-2778 (2002). [CrossRef]
  34. R. Kelly, “On the dual role of the Knudsen layer an unsteady, adiabatic expansion in pulse sputtering phenomena,” J. Chem. Phys. 92, 5047-5056 (1990). [CrossRef]
  35. Abhilasha, P. S. R. Prasad, and R. K. Thareja, “Laser-produced carbon plasma in ambient gas,” Phys. Rev. E 48, 2929-2933 (1993). [CrossRef]
  36. D. A. Freiwald and R. A. Axford, “Approximate spherical blast theory including source mass,” J. Appl. Phys. 46, 1171-1174(1975). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited