OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: James C. Wyant
  • Vol. 47, Iss. 32 — Nov. 10, 2008
  • pp: 5996–6008

Initial test results on bolometers for the Planck high frequency instrument

Warren A. Holmes, James J. Bock, Brendan P. Crill, Timothy C. Koch, William C. Jones, Andrew E. Lange, and Christopher G. Paine  »View Author Affiliations


Applied Optics, Vol. 47, Issue 32, pp. 5996-6008 (2008)
http://dx.doi.org/10.1364/AO.47.005996


View Full Text Article

Enhanced HTML    Acrobat PDF (6463 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We summarize the fabrication, flight qualification, and dark performance of bolometers completed at the Jet Propulsion Laboratory for the High Frequency Instrument (HFI) of the joint ESA/NASA Herschel/Planck mission to be launched in 2009. The HFI is a multicolor focal plane which consists of 52 bolometers operated at 100 mK . Each bolometer is mounted to a feedhorn-filter assembly which defines one of six frequency bands centered between 100 857 GHz . Four detectors in each of five bands from 143 857 GHz are coupled to both linear polarizations and thus measure the total intensity. In addition, eight detectors in each of four bands (100, 143, 217, and 353 GHz ) couple only to a single linear polarization and thus provide measurements of the Stokes parameters, Q and U, as well as the total intensity. The measured noise equivalent power (NEP) of all detectors is at or below the background limit for the telescope and time constants are a few ms, short enough to resolve point sources as the 5 to 9   arc min beams move across the sky at 1 rpm .

© 2008 Optical Society of America

OCIS Codes
(040.0040) Detectors : Detectors
(040.1240) Detectors : Arrays
(040.2235) Detectors : Far infrared or terahertz

ToC Category:
Detectors

History
Original Manuscript: June 6, 2008
Manuscript Accepted: August 11, 2008
Published: November 4, 2008

Citation
Warren A. Holmes, James J. Bock, Brendan P. Crill, Timothy C. Koch, William C. Jones, Andrew E. Lange, and Christopher G. Paine, "Initial test results on bolometers for the Planck high frequency instrument," Appl. Opt. 47, 5996-6008 (2008)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-47-32-5996


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J.-M. Lamarre, J. L. Puget, M. Piat, P. A. R. Ade, A. Lange, A. Benoit, P. de Bernardis, F. R. Bouchet, J. Bock, F. X. Desert, R. Emry, M. Giard, B. Maffei, A. Murphy, J. P. Torre, R. Bhatia, R. Sudiwala, and V. Yourchenko, “The Planck high frequency instrument, a 3rd generation CMB experiment and a full sky submillimeter survey,” Proc. SPIE 4850, 730-739 (2002).
  2. P. Mauskopf, J. Bock, H. Del Castillo, W. Holtzapfel, and A. Lange, “Composite infrared bolometers with Si3N4 micromesh absorbers,” Appl. Opt. 36, 765-771 (1997). [CrossRef]
  3. T. Koch, C. Paine, L. Hustead, M. Yun, A. Lange, J. Bock, R. Bhatia, W. Jones, P. Ade, and R. Sudiwala, “Bolometric detectors for the High Frequency Instrument on Planck,” in Proc. IEEE Aerospace Conference (IEEE, 2002), pp. 3541-3548.
  4. W. Jones, R. Bhatia, J. Bock, and A. Lange, “A polarization sensitive bolometric receiver for observations of the cosmic microwave background,” Proc. SPIE 4855, 227-238 (2003). [CrossRef]
  5. W. Jones, T. Montroy, B. Crill, C. Contaldi, T. Kisner, A. Lange, C. MacTavish, C. Netterfield, and J. Ruhl, “Instrumental and analytic methods for bolometric polarimetry,” Astron. Astrophys. 470, 771-785 (2007). [CrossRef]
  6. W. Holmes, J. Bock, K. Ganga, V. Hristov, L. Hustead, A. Lange, C. Paine, and M. Yun, “Preliminary performance measurements of bolometers for the Planck high frequency instrument,” Proc. SPIE 4855, 208-216 (2003).
  7. P. Richards, “Bolometers for infrared and millimeter waves,” J. Appl. Phys. 76, 1-24 (1994).
  8. J. C. Mather, “Bolometers: Ultimate sensitivity, optimization, and amplifier coupling,” Appl. Opt. 23, 584-588 (1984).
  9. J. C. Mather, “Bolometer noise: nonequillibrium theory,” Appl. Opt. 21, 1125-1129 (1982).
  10. R. V. Sudiwala, M. Griffin, and A. Woodcraft, “Thermal modelling and characterization of semiconducting bolometers,” Int. J. Infrared Millim. Waves 23, 545-573 (2002). [CrossRef]
  11. E. E. Haller, “Physics and design of advanced IR bolometers and photometers,” Infrared Phys. 25, 257-266 (1985). [CrossRef]
  12. J.-M. Lamarre, “Photon noise limits in mm-wave receviers,” Appl. Opt. 25, 870-876 (1986).
  13. S. M. Grannan, M. K. Hase, and P. Richards, “Numerical optimization of infrared bolometers,” Int. J. Infrared Millim. Waves 18, 319-340 (1997). [CrossRef]
  14. D. McCammon, M. Galeazzi, D. Liu, W. Sanders, B. Smith, P. Tan, K. Boyce, R. Brekosky, J. Gygax, R. Kelley, D. Mott, F. Porter, C. Stahle, C. Stahle, and A. Szymkowiak, “1/f noise and hot electron effects in variable range hopping conduction,” Phys. Status Solidi B 230, 197-204 (2002). [CrossRef]
  15. M. Yun, T. Koch, J. Bock, W. Holmes, L. Wild, J. Mulder, A. Turner, C. Paine, and A. Lange, “Bolometric detectors for the Planck surveyor,” Proc. SPIE 4855, 136-147 (2003).
  16. Analog Devices Belfast LTD., Hannahstown Hill, Belfast, Northern Ireland, UK, “Buried Silicon Oxide Wafers” (1999).
  17. B. P. Crill, F. Piacentini, P. A. R. Ade, D. R. Artusa, R. Bathia, J. J. Bock, A. Boscaleri, P. Cardoni, S. E. Church, K. Coble, P. de Bernardis, G. deTroia, P. Farese, K. M. Ganga, M. Giacometti, E. F. Hivon, V. V. Hristov, A. Iacoangeli, W. C. Jones, A. E. Lange, L. Martinis, S. Masi, P. V. Mason, P. D. Mauskopf, L. Miglio, T. Montroy, C. B. Netterfield, C. G. Paine, E. Pascale, F. Piacentini, G. Polenta, F. Pongetti, G. Romeo, J. E. Ruhl, F. Scaramuzzi, D. Sforna, and A. D. Turner, “Boomerang: A balloon-borne millimeter-wave telescope and total power receiver for mapping anisotropy in the cosmic microwave background,” Astrophys. J. Suppl. Ser. 148, 527-541 (2003). [CrossRef]
  18. C. Paine, J. Bock, V. Hristov, and A. Lange, “A low noise, high thermal stability, 0.1 K test facility for the Planck HFI bolometers,” in Advances in Cryogenic Engineering, L. Summers, ed. (Plenum, 2001), Vol. 47, pp. 1651-1658.
  19. F. Piacentini, P. A. R. Ade, R. Bathia, J. J. Bock, A. Boscaleri, P. Cardoni, B. P. Crill, P. de Bernardis, H. Del Castillo, G. De Troia, P. Farese, M. Giacometti, E. F. Hivon, V. V. Hristov, A. Iacoangeli, A. E. Lange, S. Masi, P. D. Mauskopf, L. Miglio, C. B. Netterfield, P. Palangio, E. Pascale, A. Raccanelli, S. Rao, G. Romeo, J. Ruhl, and F. Scaramuzzi, “The Boomerang North America Instrument: A balloon-borne radiometer optimized for measurements of the cosmic microwave background radiation from 0.3 degrees to 4 degrees,” Astrophys. J. Suppl. Ser. 138, 315-336(2002). [CrossRef]
  20. Stanford Research Systems, Inc., “SRS360 Low Distortion Function Generator,” http://www.thinksrs.com/products/DS360.htm (2000).
  21. National Instruments Corporation, 11500 N Mopac Expwy Austin, TX, “NI PCI-6031E Multifunction Digital Acquisition Board,” (2002).
  22. Lake Shore Cryotronics, Inc., “Germanium Resistance Thermometers,” http://www.lakeshore.com/temp/sen/gtrd.html (2000).
  23. PICOWATT (RV-ELEKTRONIIKKA OY), “AVS-47 AC Resistance Bridge,” http://www.picowatt.fi/index1.html (2000).
  24. Haller Beeman Assoc., “NTD Thermometer Type I,” http://www.haller-beeman.com/ (2000).
  25. PICOWATT (RV-ELEKTRONIIKKA OY), “TS-530A Temperature Controller,” http://www.picowatt.fi/index1.html (2000).
  26. M. Griffin and W. Holland, “Bolometer optimization,” Int. J. Infrared Millim. Waves 9, 861-875 (1988). [CrossRef]
  27. M. Piat, J.-P. Torre, E. Breelle, A. Coulais, A. Woodcraft, W. Holmes, and R. Sudiwala, “Modeling of Planck high frequency instrument bolometers using non-linear effects in the thermometers,” Nucl. Instrum. Methods Phys. Res. A 559, 588-590 (2006). [CrossRef]
  28. T. Kenny, P. Richards, I. Park, E. Haller, and J. Beeman, “Bias-induced non-linearities in the dc I-V characteristics of neutron transmutation-doped germanium at liquid-He4 temperatures,” Phys. Rev. B 39, 8476-8482 (1989). [CrossRef]
  29. S. Grannan, A. Lange, E. Haller, and J. Beeman, “Non-ohmic hopping conduction in doped germanium at T<1 K,” Phys. Rev. B 45, 4516-4519 (1992). [CrossRef]
  30. Infrared Systems Development Corp., “IR-508/301 Blackbody System,” http://www.infraredsystems.com/ (2000).
  31. Stanford Research Systems, Inc., “SRS530 Analog Lock-In Amplifier,” http://www.thinksrs.com/products/SR510530.htm(2000).
  32. J. Birmingham and P. Richards, “The heat capacity of He4 monolayers adsorbed on evaporated gold,” J. Low Temp. Phys. 109, 267-286 (1997).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited