OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: James C. Wyant
  • Vol. 47, Iss. 32 — Nov. 10, 2008
  • pp: 6058–6063

Miniature pulse compressor of deep-etched gratings

Wei Jia, Changhe Zhou, Jijun Feng, and Enwen Dai  »View Author Affiliations


Applied Optics, Vol. 47, Issue 32, pp. 6058-6063 (2008)
http://dx.doi.org/10.1364/AO.47.006058


View Full Text Article

Enhanced HTML    Acrobat PDF (3747 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We propose a miniature pulse compressor that can be used to compensate the group velocity dispersion that is produced by a commercial femtosecond laser cavity. The compressor is composed of two identical highly efficient deep-etched transmissive gratings. Compared with prism pairs, highly efficient deep-etched transmissive grating pairs are lightweight and small. With an optimized groove depth and a duty cycle, 98% diffraction efficiency of the 1 transmissive order can be achieved at a wavelength of 800 nm under Littrow conditions. The deep-etched gratings are fabricated in fused silica by inductively coupled plasma etching. With a pair of the fabricated gratings, the input positively chirped 73.9 fs pulses are neatly compressed into the nearly Fourier transform-limited 43.2 fs pulses. The miniature deep-etched grating-based pulse compressor should be of interest for practical applications.

© 2008 Optical Society of America

OCIS Codes
(050.0050) Diffraction and gratings : Diffraction and gratings
(320.5520) Ultrafast optics : Pulse compression

ToC Category:
Diffraction and Gratings

History
Original Manuscript: July 23, 2008
Revised Manuscript: September 26, 2008
Manuscript Accepted: October 8, 2008
Published: November 5, 2008

Citation
Wei Jia, Changhe Zhou, Jijun Feng, and Enwen Dai, "Miniature pulse compressor of deep-etched gratings," Appl. Opt. 47, 6058-6063 (2008)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-47-32-6058


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. L. Fork, O. E. Martinez, and J. P. Gordon, “Negative dispersion using pairs of prisms,” Opt. Lett. 9, 150-152 (1984). [CrossRef] [PubMed]
  2. O. E. Martinez, J. P. Gordon, and R. L. Fork, “Negative group-velocity dispersion using refraction,” J. Opt. Soc. Am. A 1, 1003-1006 (1984). [CrossRef]
  3. D. E. Spence, P. N. Kean, and W. Sibbett, “60-fsec pulse generation from a self-mode-locked Ti:sapphire laser,” Opt. Lett. 16, 42-44 (1991). [CrossRef] [PubMed]
  4. O. E. Martinez, “Grating and prism compressors in the case of finite beam size,” J. Opt. Soc. Am. B 3, 929-934 (1986). [CrossRef]
  5. G. Steinmeyer, “Femtosecond dispersion compensation with multilayer coatings: toward the optical octave,” Appl. Opt. 45, 1484-1490 (2006). [CrossRef] [PubMed]
  6. P. Maine, D. Strickland, P. Bado, M. Pessot, and G. Mourou, “Generation of ultrahigh peak power pulses by chirped pulse amplification,” IEEE J. Quantum Electron. 24, 398-403 (1988). [CrossRef]
  7. I. Jovanovic, B. J. Comaskey, C. A. Ebbers, R. A. Bonner, D. M. Pennington, and E. C. Morse, “Optical parametric chirped-pulse amplifier as an alternative to Ti:sapphire regenerative amplifiers,” Appl. Opt. 41, 2923-2929 (2002). [CrossRef] [PubMed]
  8. S. Kane and J. Squier, “Grating compensation of third-order material dispersion in the normal dispersion regime: sub-100-fs chirped-pulse amplification using a fiber stretcher and grating-pair compressor,” IEEE J. Quantum Electron. 31, 2052-2057 (1995). [CrossRef]
  9. E. A. Gibson, D. M. Gaudiosi, H. C. Kapteyn, and R. Jimenez, “Efficient reflection grisms for pulse compression and dispersion compensation of femtosecond pulses,” Opt. Lett. 31, 3363-3365 (2006). [CrossRef] [PubMed]
  10. J. Zheng, C. Zhou, and E. Dai, “Double-line-density gratings structure for compression and generation of double femtosecond laser pulses,” J. Opt. Soc. Am. B 24, 979-984 (2007). [CrossRef]
  11. F. W. Helbing, G. Steinmeyer, J. Stenger, H. R. Telle, and U. Keller, “Carrier--envelope-offset dynamics and stabilization of femtosecond pulses,” Appl. Phys. B 74, S35-S42(2002). [CrossRef]
  12. I. Thomann, E. Gagnon, R. J. Jones, A. Sandhu, A. Lytle, R. Anderson, J. Ye, M. Murnane, and H. Kapteyn, “Investigation of a grating-based stretcher compressor for carrier-envelope phase stabilized fs pulses,” Opt. Express 12, 3493-3499(2004). [CrossRef] [PubMed]
  13. Z. Chang, “Carrier-envelope phase shift caused by grating-based stretchers and compressors,” Appl. Opt. 45, 8350-8353 (2006). [CrossRef] [PubMed]
  14. E. B. Treacy, “Optical pulse compression with diffraction gratings,” IEEE J. Quantum Electron. QE-5, 454-458 (1969). [CrossRef]
  15. S. Wang, C. Zhou, Y. Zhang, and H. Ru, “Deep-etched high-density fused-silica transmission gratings with high efficiency at a wavelength of 1550 nm,” Appl. Opt. 45, 2567-2571 (2006). [CrossRef] [PubMed]
  16. S. Wang, C. Zhou, H. Ru, and Y. Zhang, “Optimized condition for etching fused-silica phase gratings with inductively coupled plasma technology,” Appl. Opt. 44, 4429-4434 (2005). [CrossRef] [PubMed]
  17. B. Wang, C. Zhou, S. Wang, and J. Feng, “Polarizing beam splitter of a deep-etched fused-silica grating,” Opt. Lett. 32, 1299-1301 (2007). [CrossRef] [PubMed]
  18. G. Li, C. Zhou, and E. Dai, “Splitting of femtosecond laser pulses by using a Dammann grating and compensation gratings,” J. Opt. Soc. Am. A 22, 767-772 (2005). [CrossRef]
  19. B. Bai, C. Zhou, E. Dai, and J. Zheng, “Generation of double pulses in-line by using reflective Dammann gratings,” Optik 119, 74-80 (2008). [CrossRef]
  20. M. G. Moharam, E. B. Grann, D. A. Pommet, and T. K. Gaylord, “Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings,” J. Opt. Soc. Am. A 12, 1068-1076 (1995). [CrossRef]
  21. Y. Zhang and C. Zhou, “High-efficiency reflective diffraction gratings in fused silica as (de)multiplexers at 1.55 μm for dense wavelength division multiplexing application,” J. Opt. Soc. Am. A 22, 331-334 (2005). [CrossRef]
  22. B. Wang, C. Zhou, J. Zheng, and J. Feng, “Wideband two-port beam splitter of a binary fused silica phase grating,” Appl. Opt. 47, 4004-4008 (2008). [CrossRef] [PubMed]
  23. R. Trebino, Frequency-Resolved Optical Gating: the Measurement of Ultrashort Laser Pulses (Kluwer Academic, 2002). [CrossRef]
  24. E. Dai, C. Zhou, and G. Li, “Dammann SHG-FROG for characterization of the ultrashort optical pulses,” Opt. Express 13, 6145-6152 (2005). [CrossRef] [PubMed]
  25. J. Zheng, C. Zhou, J. Feng, and B. Wang, “Polarizing beam splitter of deep-etched triangular-groove fused-silica gratings,” Opt. Lett. 33, 1554-1556 (2008). [CrossRef] [PubMed]
  26. T. Clausnitzer, J. Limpert, K. Zöllner, H. Zellmer, H. -J. Fuchs, E. -B. Kley, A. Tünnermann, M. Jupé, and D. Ristau, “Highly efficient transmission gratings in fused silica for chirped-pulse amplification systems,” Appl. Opt. 42, 6934-6938(2003). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited