OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: James C. Wyant
  • Vol. 47, Iss. 32 — Nov. 10, 2008
  • pp: 6088–6098

Method of zoom lens design

Antonín Mikš, Jiří Novák, and Pavel Novák  »View Author Affiliations


Applied Optics, Vol. 47, Issue 32, pp. 6088-6098 (2008)
http://dx.doi.org/10.1364/AO.47.006088


View Full Text Article

Enhanced HTML    Acrobat PDF (3158 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Optical systems with variable optical characteristics (zoom lenses) find broader applications in practice nowadays and methods for their design are constantly developed and improved. We describe a relatively simple method of the design of zoom lenses using the third-order aberration theory. It presents one of the possible approaches of obtaining the Seidel aberration coefficients of individual members of a zoom lens. The advantage of this method is that Seidel aberration coefficients of individual elements of a given optical system can be obtained simply by solving of a set of linear equations. By using these coefficients, one can determine residual aberrations of the optical system without detailed knowledge about the structure of its individual elements. Furthermore, we can determine construction parameters of the optical system, i.e., radii of curvature and thicknesses of individual elements of a given optical system. The proposed method makes it possible to determine which elements of the optical system can be designed as simple lenses and which elements must have a more complicated design, e.g., doublets or triplets.

© 2008 Optical Society of America

OCIS Codes
(080.0080) Geometric optics : Geometric optics
(080.1010) Geometric optics : Aberrations (global)
(080.3620) Geometric optics : Lens system design
(220.0220) Optical design and fabrication : Optical design and fabrication
(220.1000) Optical design and fabrication : Aberration compensation
(220.3620) Optical design and fabrication : Lens system design

ToC Category:
Optical Design and Fabrication

History
Original Manuscript: June 26, 2008
Revised Manuscript: October 13, 2008
Manuscript Accepted: October 13, 2008
Published: November 7, 2008

Citation
Antonín Mikš, Jiří Novák, and Pavel Novák, "Method of zoom lens design," Appl. Opt. 47, 6088-6098 (2008)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-47-32-6088


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. B. Havelka, Geometrical Optics I, II (Czech Academy of Science, 1955).
  2. D. Argentieri, Ottica Industriale (Hoepli, 1942).
  3. H. H. Hopkins, Wave Theory of Aberrations (Oxford, 1950).
  4. G. G. Slyusarev, Aberration and Optical Design Theory (Adam Hilger, 1984).
  5. A. Cox, A System of Optical Design (Focal, 1964).
  6. P. Mouroulis and J. MacDonald, Geometrical Optics and Optical Design (Oxford, 1997).
  7. A. Mikš, Applied Optics (Czech Technical U. Press, 2000).
  8. A. Mikš, “Modification of the formulas for third-order aberration coefficients,” J. Opt. Soc. Am. A 19, 1867-1871 (2002). [CrossRef]
  9. A. E. Conrady, Applied Optics and Optical Design, Part I (Oxford, 1929), Part II (Dover, 1960).
  10. H. Haferkorn, Bewertung Optisher Systeme (VEB Deutscher Verlag der Wissenschaften, 1986).
  11. W. T. Welford, Aberrations of the Symmetrical Optical Systems (Academic, 1974).
  12. A. D. Clark, Zoom Lenses (Adam Hilger, 1973).
  13. K. Yamaji, Progress in Optics (North-Holland, 1967), Vol. VI.
  14. A. Wather, “Angle eikonals for a perfect zoom system,” J. Opt. Soc. Am. A 18, 1968-1971 (2001). [CrossRef]
  15. G. Wooters and E. W. Silvertooth, “Optically compensated zoom lens,” J. Opt. Soc. Am. 55, 347-351 (1965). [CrossRef]
  16. D. F. Kienholz, “The design of a zoom lens with a large computer,” Appl. Opt. 9, 1443-1452 (1970). [CrossRef] [PubMed]
  17. A. V. Grinkevich, “Version of an objective with variable focal length,” J. Opt. Technol. 73343-345 (2006). [CrossRef]
  18. K. Tanaka, “Paraxial analysis of mechanically compensated zoom lenses. 1: Four-component type,” Appl. Opt. 21, 2174-2183 (1982). [CrossRef] [PubMed]
  19. G. H. Matter and E. T. Luszcz, “A family of optically compensated zoom lenses,” Appl. Opt. 9, 844-848 (1970). [CrossRef] [PubMed]
  20. K. Tanaka, “Erratum: Paraxial analysis of mechanically compensated zoom lenses. 1: Four-component type,” Appl. Opt. 21, 3805 (1982). [CrossRef] [PubMed]
  21. K. Tanaka, “Paraxial analysis of mechanically compensated zoom lenses. 2: Generalization of Yamaji type V,” Appl. Opt. 21, 4045-4053 (1982). [CrossRef] [PubMed]
  22. K. Tanaka, “Paraxial analysis of mechanically compensated zoom lenses. 3: Five-component type,” Appl. Opt. 22, 541-553 (1983). [CrossRef] [PubMed]
  23. H. Chretien, Calcul des Combinaisons Optiques (Masson, 1980).
  24. H. H. Hopkins and V. V. Rao, “The systematic design of two component objectives,” Opt. Acta 17, 497-514 (1970). [CrossRef]
  25. M. I. Khan, “Cemented triplets: a method for rapid design,” Opt. Acta 31, 873-883 (1984). [CrossRef]
  26. www.zemax.com
  27. www.sinopt.com

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited