OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: James C. Wyant
  • Vol. 47, Iss. 33 — Nov. 20, 2008
  • pp: 6151–6158

Experimental confirmation of potential swept source optical coherence tomography performance limitations

Kathy Zheng, Bin Liu, Chuanyong Huang, and Mark E. Brezinski  »View Author Affiliations


Applied Optics, Vol. 47, Issue 33, pp. 6151-6158 (2008)
http://dx.doi.org/10.1364/AO.47.006151


View Full Text Article

Enhanced HTML    Acrobat PDF (7542 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Optical coherence tomography (OCT) has demonstrated considerable potential for a wide range of medical applications. Initial work was done in the time domain OCT (TD-OCT) approach, but recent interest has been generated with spectral domain OCT (SD-OCT) approaches. While SD-OCT offers higher data acquisition rates and no movable parts, we recently pointed out theoretical inferior aspects to its performance relative to TD-OCT. In this paper we focus on specific limitations of swept source OCT (SS-OCT), as this is the more versatile of the two SD-OCT embodiments. We present experimental evidence of reduced imaging penetration, increased low frequency noise, higher multiple scattering (which can be worsened still via aliasing), increased need to control the distance from the sample, and saturation of central bandwidth frequencies. We conclude that for scenarios where the dynamic range is relatively low (e.g., retina), the distance from the sample is relatively constant, or high acquisition rates are needed, SS-OCT has a role. However, when penetration remains important in the setting of a relatively high dynamic range, acquisition rates above video rate are not needed, or the distance to the tissue is not constant, TD-OCT may be the superior approach.

© 2008 Optical Society of America

OCIS Codes
(110.4280) Imaging systems : Noise in imaging systems
(170.3660) Medical optics and biotechnology : Light propagation in tissues
(170.4500) Medical optics and biotechnology : Optical coherence tomography

ToC Category:
Medical Optics and Biotechnology

History
Original Manuscript: May 28, 2008
Revised Manuscript: September 30, 2008
Manuscript Accepted: October 6, 2008
Published: November 11, 2008

Virtual Issues
Vol. 4, Iss. 1 Virtual Journal for Biomedical Optics

Citation
Kathy Zheng, Bin Liu, Chuanyong Huang, and Mark E. Brezinski, "Experimental confirmation of potential swept source optical coherence tomography performance limitations," Appl. Opt. 47, 6151-6158 (2008)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-47-33-6151


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. E. Brezinski, Optical Coherence Tomography, Principle and Practice (Academic, 2006).
  2. M. E. Brezinski and J. G. Fujimoto, “Optical coherence tomography: high-resolution imaging in nontransparent tissue,” IEEE J. Sel. Top. Quantum Electron. 5, 1185-1192 (1999). [CrossRef]
  3. M. E. Brezinski, G. J. Tearney, B. E. Bouma, J. A. Izatt, M. R. Hee, E. A. Swanson, J. F. Southern, and J. G. Fujimoto, “Optical coherence tomography for optical biopsy--properties and demonstration of vascular pathology,” Circulation 93, 1206-1213 (1996). [PubMed]
  4. G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, and J. G. Fujimoto, “In vivo endoscopic optical biopsy with optical coherence tomography,” Science 276, 2037-2039 (1997). [CrossRef] [PubMed]
  5. A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. Elzaiat, “Measurement Of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117, 43-48(1995). [CrossRef]
  6. A. Wax, C. H. Yang, and J. A. Izatt, “Fourier-domain low-coherence interferometry for light-scattering spectroscopy,” Opt. Lett. 28, 1230-1232 (2003). [CrossRef] [PubMed]
  7. S. H. Yun, G. J. Tearney, B. E. Bouma, B. H. Park, and J. F. de Boer, “High-speed spectral-domain optical coherence tomography at 1.3 μm wavelength,” Opt. Express 11, 3598-3604(2003). [CrossRef] [PubMed]
  8. S. R. Chinn, E. A. Swanson, and J. G. Fujimoto, “Optical coherence tomography using a frequency-tunable optical source,” Opt. Lett. 22, 340-342 (1997). [CrossRef] [PubMed]
  9. M. A. Choma, M. V. Sarunic, C. H. Yang, and J. A. Izatt, “Sensitivity advantage of swept source and Fourier domain optical coherence tomography,” Opt. Express 11, 2183-2189(2003). [CrossRef] [PubMed]
  10. B. Liu and M. E. Brezinski, “Theoretical and practical considerations on detection performance of time domain, Fourier domain, and swept source optical coherence tomography,” J. Biomedical Optics 12, 044007 (2007). [CrossRef]
  11. http://www.lightlabimaging.com/
  12. http://www.thorlabs.com/
  13. H. Yabushita, B. E. Bouma, S. L. Houser, H. T. Aretz, I.-K. Jang, K. H. Schlendorf, C. R. Kauffman, M. Shishkov, D.-H. Kang, E. F. Halpern, and G. J. Tearney, “Characterization of human atherosclerosis by optical coherence tomography,” Circulation 106 (13), 1640-1645 (2002). [CrossRef] [PubMed]
  14. C. Pitris, C. Jesser, S. A. Boppart, D. Stamper, M. E. Brezinski, and J. G. Fujimoto, “Feasibility of optical coherence tomography for high resolution imaging of human gastrointestinal tract malignancies,” J. Gastroenterol. 35, 87-92 (2000). [CrossRef] [PubMed]
  15. G. Zuccaro, N. Gladkova, J. Vargo, F. Feldchtein, E. Zagaynova, D. Conwell, G. Falk, J. Goldblum, J. Dumot, J. Pnsky, G. Gelikonov, B. Davros, E. Donchenko, and J. Richter, “Optical coherence tomography of the esophagus and proximal stomach in health and disease,” Am. J. Gastroenetrol. 96, 2633-2639 (2001). [CrossRef]
  16. V. Karageorgiou and D. Kaplan, “Porosity of 3D biomaterial scaffolds and osteogenesis,” Biomaterials 26, 5474-5491(2005). [CrossRef] [PubMed]
  17. S. R. Frenkel and P. E. Di Cesare, “Scaffolds for articular cartilage repair,” Ann. Biomed. Eng. 32, 26-34 (2004). [CrossRef] [PubMed]
  18. S. L. Ishaug Riley, G. M. Crane-Kruger, M. J. Yaszemski, and A. G. Mikos, “Three-dimensional culture of rat calvarial osteoblasts in porous biodegradable polymers,” Biomaterials 19, 1405 (1998). [CrossRef] [PubMed]
  19. B. Liu, M. Harman, S. Giattina, D. L. Stamper, C. Demakis, M. Chilek, S. Raby, and M. E. Brezinski, “Characterizing of tissue microstructure with single-detector polarization-sensitive optical coherence tomography,” Appl. Opt. 45, 4464-4479 (2006). [CrossRef] [PubMed]
  20. M. Wojtkowski, A. Kowalczyk, R. Leitgeb, and A. F. Fercher, “Full range complex spectral optical coherence tomography technique in eye imaging,” Opt. Lett. 27, 1415-1417 (2002). [CrossRef]
  21. T. Ren, J. Ren, and K. Pan, “The bone formation in vitro and mandibular defect repair using PLGA porous scaffolds,” J Biomed Mater Res A 74, 562-569 (2005). [PubMed]
  22. W. Drexler, D. Stamper, C. Jesser, X. Li, C. Pitris, K. Saunders, S. Martin, M. B. Lodge, J. G. Fujimoto, and M. E. Brezinski, “Correlation of collagen organization with polarization sensitive imaging in cartilage: implications for osteoarthritis,” J. Rheumatol. 28, 1311-1318 (2001). [PubMed]
  23. R. K. K. Wang, “In vivo full range complex Fourier domain optical coherence tomography,” Appl. Phys. Lett. 90, 054103(2007). [CrossRef]
  24. P. Horowitz and W. Hill, The Art of Electronics, 2nd ed. (Cambridge University, 1997), pp. 614-617.
  25. H. Kin and H. W. Kim, “Sustained release of ascorbate-2-phosphate and dexamethasone from porous PLGA scaffolds for bone tissue engineering using mesenchymal stem cells,” Biomaterials 24, 4671-4679 (2003). [CrossRef]
  26. J. W. Goodman, Introduction to Fourier Optics, 2nd ed. (McGraw Hill, 1996).
  27. D. J. Smithies, T. Lindmo, C. Zhongping, J. S. Nelson, and T. E. Milner, “Signal attenuation and localization in optical coherence tomography studied by Monte Carlo simulation,” Phys. Med. Biol. 43, 3025-2044 (1998). [CrossRef] [PubMed]
  28. G. Yao and L. V. Wang, “Monte Carlo simulation of an optical coherence tomography signal in homogeneous turbid media,” Phys. Med. Biol. 44, 2307-2320 (1999). [CrossRef] [PubMed]
  29. R. A. Leitgeb, W. Drexler, A. Unterhuber, B. Hermann, T. Bajraszewski, T. Le, A. Stingl, and A. F. Fercher, “Ultrahigh resolution Fourier domain optical coherence tomography,” Opt. Express 12, 2156-2165 (2004). [CrossRef] [PubMed]
  30. L. Thrane, H. T. Yura, and P. E. Andersen, “Analysis of optical coherence tomography systems based on the extended Huygens-Fresnel principle,” J. Opt. Soc. Am. A 17, 484-490(2000). [CrossRef]
  31. J. Zhang, J. S. Nelson, and Z. P. Chen, “Removal of a mirror image and enhancement of the signal-to-noise ratio in Fourier-domain optical coherence tomography using an electro-optic phase modulator,” Opt. Lett. 30, 147-149 (2005). [CrossRef] [PubMed]
  32. A. M. Davis, M. A. Choma, and J. A. Izatt, “Heterodyne swept-source optical coherence tomography for complete complex conjugate ambiguity removal,” J Biomed. Opt. 10, 064005 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited