OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: James C. Wyant
  • Vol. 47, Iss. 33 — Nov. 20, 2008
  • pp: 6159–6176

Optimization of design and operating parameters of a space-based optical-electronic system with a distributed aperture

Iouri Tcherniavski and Mojtaba Kahrizi  »View Author Affiliations

Applied Optics, Vol. 47, Issue 33, pp. 6159-6176 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (5616 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Using a gradient optimization method with objective functions formulated in terms of a signal-to-noise ratio (SNR) calculated at given values of the prescribed spatial ground resolution, optimization problems of geometrical parameters of a distributed optical system and a charge-coupled device of a space-based optical-electronic system are solved for samples of the optical systems consisting of two and three annular subapertures. The modulation transfer function (MTF) of the distributed aperture is expressed in terms of an average MTF taking residual image alignment (IA) and optical path difference (OPD) errors into account. The results show optimal solutions of the optimization problems depending on diverse variable parameters. The information on the magnitudes of the SNR can be used to determine the number of the subapertures and their sizes, while the information on the SNR decrease depending on the IA and OPD errors can be useful in design of a beam combination control system to produce the necessary requirements to its accuracy on the basis of the permissible deterioration in the image quality.

© 2008 Optical Society of America

OCIS Codes
(110.0110) Imaging systems : Imaging systems
(110.1220) Imaging systems : Apertures
(110.4850) Imaging systems : Optical transfer functions
(110.5100) Imaging systems : Phased-array imaging systems
(330.6130) Vision, color, and visual optics : Spatial resolution
(350.6090) Other areas of optics : Space optics

ToC Category:
Imaging Systems

Original Manuscript: August 21, 2008
Manuscript Accepted: October 2, 2008
Published: November 13, 2008

Iouri Tcherniavski and Mojtaba Kahrizi, "Optimization of design and operating parameters of a space-based optical-electronic system with a distributed aperture," Appl. Opt. 47, 6159-6176 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. L. M. Stepp, L. G. Daggert, and P. E. Gillett, “Estimating the cost of extremely large telescopes,” Proc. SPIE 4840, 309-321 (2003).
  2. R. Goullioud and J. H. Catanzarite, “Looking for Earth-like planets with the SIM Planet Quest Light Mission,” in Aerospace Conference (IEEE, 2008), pp. 1-9, doi: 10.1109/AERO.2008.4526409. [CrossRef]
  3. Technology Plan for the Terrestrial Planet Finder Interferometer, P. R. Lawson and J. A. Dooley, eds. (California Institute of Technology, 2005).
  4. J. E. Harvey, A. B. Wissinger, and A. N. Bunner, “A parametric study of various synthetic aperture telescope configurations for coherent imaging applications,” Proc. SPIE 643, 194-207(1986).
  5. S. M. Watson, J. P. Mills, and S. K. Rogers, “Two-point resolution criterion for multiaperture optical telescopes,” J. Opt. Soc. Am. A 5, 893-903 (1988).
  6. ESO/VLT Interferometry Panel, “The VLT interferometer implementation plan,” VLT Report 59b (European Southern Observatory, 1989).
  7. M. Faucherre, F. Merkle, and F. Vakili, “Beam combination in aperture synthesis from space: field of view limitations and (u,v) plane coverage optimization,” Proc. SPIE 1130, 138-145(1989).
  8. J. P. Fitch and T. W. Lawrence, “Placement of multiple apertures for imaging telescopes,” Proc. SPIE 1237, 61-69(1990).
  9. R. Barakat, “Dilute aperture diffraction imagery and object reconstruction,” Opt. Eng. 29, 131-139 (1990).
  10. L. Damé and T.-D. Guyenne, “Study of an optimized configuration for interferometric imaging of complex and extended solar structures,” in Targets for Space-Based Interferometry, Vol. SP-354, pp. 201-208 (European Space Agency, 1992).
  11. J. L. Flores, M. Strojnik, and G. Paez, “Diluted-aperture mirror with a constraint on the cut-off frequency,” Proc. SPIE 3437, 416-423 (1998).
  12. J. L. Flores, G. Paez, and M. Strojnik, “Design of a diluted aperture by use of the practical cutoff frequency,” Appl. Opt. 38, 6010-6018 (1999). [CrossRef]
  13. I. Tcherniavski and M. Kahrizi, “Optimization of the optical sparse array configuration,” Opt. Eng. 44, 103201 (2005).
  14. F. Roddier, “Redundant versus nonredundant beam recombination in an aperture synthesis with coherent optical arrays,” J. Opt. Soc. Am. A 4, 1396-1401 (1987).
  15. J. R. Fienup, “MTF and integration time versus fill factor for sparse-aperture imaging systems,” Proc. SPIE 4091, 43-47(2000).
  16. R. B. Hindsley and D. Mozurkewich, “Signal to noise in sparse aperture imaging,” in Proceedings of IEEE Conference on Aerospace (IEEE, 2001), pp. 1429-1443.
  17. J. R. P. Angel, “Sensitivity of optical interferometers with coherent image combination,” Proc. SPIE 4838, 126-133 (2003).
  18. I. Tcherniavski and M. Kahrizi, “Influence of the random image alignment and optical path difference errors of a beam combination system on the optical transfer function of the optical sparse array,” Opt. Eng. 45, 093202 (2006).
  19. J. M. Irvine, “National Imagery Interpretability Rating Scale (NIIRS),” in Encyclopedia of Optical Engineering, R. G. Driggers, ed. (Marcel Dekker, 2003), pp. 1442-1456.
  20. J. C. Leachtenauer, “Image quality equations and NIIRS,” in Encyclopedia of Optical Engineering, R. G. Driggers, ed. (Marcel Dekker, 2003), pp. 794-811.
  21. R. D. Fiete and Th. Tantalo, “Comparison of SNR image quality metrics for remote sensing systems,” Opt. Eng. 40, 574-585 (2001).
  22. F. A. Rosell and R. H. Willson, “Recent psychophysical experiments and the display signal-to-noise ratio concept,” in Perception of Displayed Information, L. M. Biberman, ed. (Plenum, 1973), pp. 167-232.
  23. J. A. Hall, “Signal and noise in the display of images,” in Solid State Imaging, P. G. Jespers, F. Van de Wiele, and M. H. White, eds. (Noordhoff, 1976), pp. 637-658.
  24. R. E. Hufnagel and N. R. Stanley, “Modulation transfer function associated with image transmission through turbulent media,” J. Opt. Soc. Am. 54, 52-61 (1964).
  25. D. L. Fried, “Optical resolution through a randomly inhomogeneous medium for very long and very short exposures,” J. Opt. Soc. Am. 56, 1372-1379 (1966).
  26. V. I. Tatarski, Wave Propagation in a Turbulent Medium (McGraw-Hill, 1961).
  27. D. L. Fried, “Limiting resolution looking down through the atmosphere,” J. Opt. Soc. Am. 56, 1380-1384 (1966).
  28. D. L. Fried, “Statistics of a geometric representation of wavefront distortion,” J. Opt. Soc. Am. 55, 1427-1435 (1965).
  29. D. F. Barbe, “Time delay and integration image sensors,” in Solid State Imaging, P. G. Jespers, F. Van de Wiele, and M. H. White, eds. (Noordhoff, 1976), pp. 659-671.
  30. M. H. White, “Design of solid-state imaging arrays,” in Solid State Imaging, P. G. Jespers, F. Van de Wiele, and M. H. White, eds (Noordhoff, 1976), pp. 485-522.
  31. “ASTER spectral library,” http://speclib.jpl.nasa.gov.
  32. R. A. Schowengerdt, Remote Sensing: Models and Methods for Image Processing (Elsevier, 2007), Chap. 2.
  33. A. Berk, G. P. Anderson, L. S. Bernstein, P. K. Acharya, H. Dothe, M. W. Matthew, S. M. Adler-Golden, J. H. Chetwynd Jr., S. C. Richtsmeier, B. Pukall, C. L. Allred, L. S. Jeong, and M. L. Hoke, “MODTRAN4 radiative transfer modeling for atmospheric correction,” Proc. SPIE 3756, 348-353 (1999).
  34. Fairchild Imaging, CCD 525 Data Sheet: “CCD525 Time Delay Integration Line Scan Sensor,” http://www.fairchildimaging.com/main/documents/CCD525DataSheetRevA.pdf.
  35. Surrey Satellite Technology Ltd. “Surrey Missions: TopSat,” http://microsat.sm.bmstu.ru/e-library/SSTL/Mission_Topsat.pdf.
  36. DigitalGlobe “QuickBird,” http://www.digitalglobe.com/index.php/85/QuickBird.
  37. DigitalGlobe “WorldView-1,” http://www.digitalglobe.com/index.php/86/WorldView-1.
  38. GeoEye “GeoEye-1,” http://www.geoeye.com/CorpSite/products/imagery-sources/Default.aspx#geoeye1.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited