OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: James C. Wyant
  • Vol. 47, Iss. 33 — Nov. 20, 2008
  • pp: 6177–6182

Absorption and related optical dispersion effects on the spectral response of a surface plasmon resonance sensor

Mohamed Nakkach, Pierre Lecaruyer, Fabrice Bardin, Jaouhar Sakly, Zohra Ben Lakhdar, and Michael Canva  »View Author Affiliations


Applied Optics, Vol. 47, Issue 33, pp. 6177-6182 (2008)
http://dx.doi.org/10.1364/AO.47.006177


View Full Text Article

Enhanced HTML    Acrobat PDF (5081 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Surface plasmon resonance (SPR) sensing is an optical technique that allows real time detection of small changes in the physical properties, in particular in the refractive index, of a dielectric medium near a metal film surface. One way to increase the SPR signal shift is then to incorporate a substance possessing a strong dispersive refractive index in the range of the plasmon resonance band. In this paper, we investigate the impact of materials possessing a strong dispersive index integrated to the dielectric medium on the SPR reflectivity profile. We present theoretical results based on chromophore absorption spectra and on their associated refractive index obtained from the Lorentz approach and Kramers– Krönig equations. As predicted by the theory, the experimental results show an enhancement of the SPR response, maximized when the chromophore absorption band coincides with the plasmon resonant wavelength. This shows that chromophores labeling can provide a potential way for SPR response enhancement.

© 2008 Optical Society of America

OCIS Codes
(120.0120) Instrumentation, measurement, and metrology : Instrumentation, measurement, and metrology
(160.4760) Materials : Optical properties
(240.6680) Optics at surfaces : Surface plasmons
(310.6870) Thin films : Thin films, other properties
(310.6188) Thin films : Spectral properties

ToC Category:
Instrumentation, Measurement, and Metrology

History
Original Manuscript: July 15, 2008
Manuscript Accepted: August 15, 2008
Published: November 13, 2008

Virtual Issues
Vol. 4, Iss. 1 Virtual Journal for Biomedical Optics

Citation
Mohamed Nakkach, Pierre Lecaruyer, Fabrice Bardin, Jaouhar Sakly, Zohra Ben Lakhdar, and Michael Canva, "Absorption and related optical dispersion effects on the spectral response of a surface plasmon resonance sensor," Appl. Opt. 47, 6177-6182 (2008)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-47-33-6177


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. I. Mannelli, V. Courtois, P. Lecaruyer, G. Roger, M. C. Millot, M. Goosens, and M. Canva, “Surface plasmon resonance imaging (SPRI) system and real-time monitoring of DNA biochip for human genetic mutation diagnosis of DNA ampllified samples,” Sens. Actuators B 119, 583-591 (2006).
  2. J. Spadavecchia, M. G. Manera, F. Quaranta, P. Siciliano, and R. Rella, “Surface plasmon resonance imaging of DNA based biosensors for potential applications in food analysis,” Biosens. Bioelectron. 21, 894-900 (2005). [CrossRef]
  3. M. G. Manera, J. Spadavecchia, A. Leone, F. Quaranta, R. Rella, D. Dell'atti, M. Minunni, M. Mascini, and P. Siciliano, “Surface plasmon resonance imaging technique for nucleic acid detection,” Sens. Actuators B 130, 82-87 (2008).
  4. M. Kim, K. Park., E. J. Jeong, Y. B. Shin, and B. H. Chung, “Surface plasmon resonance imaging analysis of protein-protein interactions using on-chip-expressed capture protein,” Anal. Biochem. 351, 298-304 (2006). [CrossRef]
  5. T. Mori, K. Inamori, Y. Inoue, X. Han, G. Yamanouchi, T. Niidome, and Y. Katayama, “Evaluation of protein kinase activities of cell lysates using peptide microarrays based on surface plasmon resonance imaging,” Anal. Biochem. 375, 223-231 (2008). [CrossRef]
  6. J. S. Yuk, H. S. Kim, J. W. Jung, S. H. Jung, S. J. Lee, W. J. Kimb, J. Han, Y. M. Kim, and K. S. Ha, “Analysis of protein interactions on protein arrays by a novel spectral surface plasmon resonance imaging,” Biosens. Bioelectron. 21, 1521-1528 (2006). [CrossRef]
  7. E. Kretschmann and H. Raether, “Radiative decay of non-radiative surface plasmons excited by light,” Z. Naturforsch 23, 2135-2136 (1968).
  8. J. Homola, “Surface plasmon resonance sensors for detection of chemical and biological species,” Chem. Rev. 108, 462-493(2008). [CrossRef]
  9. H. Komatsu, M. Miyachi, E. Fujii, D. Citterio, K. Yamada, Y. Sato, K. Kurihara, H. Kawaguchi, and K. Suzuki, “SPR sensor signal amplification based on dye-doped polymer particles,” Sci. Tech. Adv. Mater. 7, 150-155 (2006).
  10. K. Kurihara, K. Nakamura, E. Hirayama, and K. Suzuki, “An absorption-based surface plasmon resonance sensor applied to sodium ion sensing based on an ion-selective optode membrane,” Anal. Chem. 74, 6323-6333 (2002). [CrossRef]
  11. S. Wang, S. Boussad, and N. J. Tao, “Surface plasmon resonance enhanced optical absorption spectroscopy for studying molecular adsorbates,” Rev. Sci. Instrum. 72, 3055-3060(2001). [CrossRef]
  12. A. A. Kolomenskii, P. D. Gershon, and A. Schuessler, “Surface-plasmon resonance spectrometry and characterization of absorbing liquids,” Appl. Opt. 39, 3314-3320 (2000). [CrossRef]
  13. A. Hanning, J. Roeraade, J. J. Delrow, and R. C. Jorgenson, “Enhanced sensitivity of wavelength modulated surface plasmon resonance devices using dispersion from a dye solution,” Sens. Actuators B 54, 25-36 (1999).
  14. C. Bonnand, J. Bellesa, and J. C. Plénet, “Study of strong coupling between surface plasmon and exciton in an organic semiconductor,” J. Non-Cryst. Solids 352, 1683-1685 (2006).
  15. U. Fano, “The theory of anomalous diffraction gratings and of quasi-stationary waves on metallic surfaces (Sommerfeld's waves),” J. Opt. Soc. Am. 31, 213-222 (1941).
  16. A. Otto, “Excitation of surface plasma waves in silver by the method of frustrated total reflection,” Z. Phys. 216, 398-410(1968).
  17. P. Lecaruyer, I. Mannelli, V. Courtois, M. Goossens, and M. Canva, “Surface plasmon resonance imaging as a multidimensional surface characterization instrument: application to biochip genotyping,” Anal. Chim. Acta 573-574, 333-340(2006). [CrossRef]
  18. P. Lecaruyer, E. Maillart, M. Canva, and J. Rolland, “Generalization of the Rouard method to an absorbing thin-film stack and application to surface plasmon resonance,” Appl. Opt. 45, 8419-8423 (2006). [CrossRef]
  19. P. Lecaruyer, M. Canva, and J. Rolland, “Metallic film optimization in a surface plasmon resonance biosensor by the extended Rouard method,” Appl. Opt. 46, 2361-2369 (2007). [CrossRef]
  20. http://www.tsukasa-co.jp/product/optics/documents/CVI_Appendix.pdf.
  21. http://unicorn.ps.uci.edu/calculations/fresnel/audata.txt.
  22. http://www.sopra-sa.com/index2.php?goto=d1&rub=4.
  23. S. Elhadj, G. Singh, and R. F. Saraf, “Optical properties of immobilized DNA monolayer from 255 to 700 nm,” Langmuir 20, 5539-5543 (2004). [CrossRef]
  24. http://www.eurogentec.com/EGT/files/Oligonucleotides.pdf.
  25. P. Prêtre, L.-M. Wu, A. Knoesen, and J. D Swalen, “Optical properties of nonlinear polymers: a method for calculation,” J. Opt. Soc. Am. 15, 359-368 (1998).
  26. home.earthlink.net/~fluorescentdyes/McNamara2007FluorophoresTable.xls.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited