OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: James C. Wyant
  • Vol. 47, Iss. 33 — Nov. 20, 2008
  • pp: 6243–6250

Investigation of amplification process on the third Stokes line of H 2 under ultraviolet laser irradiation

Mohammed A. Gondal and Abdulkader Dastageer  »View Author Affiliations


Applied Optics, Vol. 47, Issue 33, pp. 6243-6250 (2008)
http://dx.doi.org/10.1364/AO.47.006243


View Full Text Article

Enhanced HTML    Acrobat PDF (499 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

An amplification process was investigated in the third stimulated Raman scattering (SRS) line of H 2 excited with a 266 nm laser beam generated from the fourth harmonic of a Nd:YAG laser. The unexpected intensity enhancement observed at the third Stokes SRS line around 397.8 nm is attributed to the seeding of the self-generated H- ε Balmer line at 397 nm of atomic hydrogen by pumping the H 2 molecule with a high-energy laser pulse at 266 nm . It is worth mentioning that in our case the SRS spectrum of H 2 showed a quite different intensity pattern from the usual SRS spectra of hydrogen. The pulse energy and pressure dependence of all the SRS lines in general and the third Stokes SRS line in particular were investigated, and in all respects the amplified SRS line at 397.8 nm manifested completely different characteristics that have not been reported in previous publications. The conversion efficiency (CE) of all the SRS lines in the hydrogen 266 nm SRS spectrum was also estimated, and 36% CE was achieved at the 397.78 nm line. To support our claim for amplification at the third Stokes line by seeding of the H- ε Balmer line of atomic hydrogen, a comparative study was also carried out by pumping hydrogen gas with 355 nm (less energy per photon) and 266 nm laser beams. It is worth noting that amplification of the third Stokes SRS line was observed only with the 266 nm pump laser, where dissociation of H 2 and excitation of atomic hydrogen take place, and not with the 355 nm pump laser.

© 2008 Optical Society of America

OCIS Codes
(140.3550) Lasers and laser optics : Lasers, Raman
(190.5650) Nonlinear optics : Raman effect

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: July 2, 2008
Revised Manuscript: October 12, 2008
Manuscript Accepted: October 17, 2008
Published: November 19, 2008

Citation
Mohammed A. Gondal and Abdulkader Dastageer, "Investigation of amplification process on the third Stokes line of H2 under ultraviolet laser irradiation," Appl. Opt. 47, 6243-6250 (2008)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-47-33-6243


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. W. Hellwarth, “Theory of stimulated Raman scattering,” Phys. Rev. 130, 1850-1852 (1963). [CrossRef]
  2. C.-S. Wang, “Theory of stimulated Raman scattering,” Phys. Rev. 182, 482-494 (1969). [CrossRef]
  3. R. W. Minck, R. W. Terhune, and W. G. Rado, “Laser stimulated Raman effect and resonant four photon interactions in gases H2, D2 and CH4,” Appl. Phys. Lett. 3, 181-184 (1963). [CrossRef]
  4. V. Krylov, A. Rabane, O. Ollikainen, D. Erni, U. Wild, V. Bespelov, and D. Staselko, “Stimulated Raman scattering in hydrogen by frequency-doubled amplified femtosecond Ti:sapphire laser pulses,” Opt. Lett. 21, 381-83 (1996). [CrossRef] [PubMed]
  5. G. V. Venkin and G. M. Mikheev, “Stimulated Raman spectroscopy of excited states of the hydrogen molecule,” Sov. J. Quantum Electron. 15, 257-259 (1985). [CrossRef]
  6. F. Benapid, G. Antonopoulos, J. C. Knight, P. J. Russell, “Stokes amplification regimes in quasi-cw pumped hydrogen-filled hollow-core photonic crystal fiber,” Phys. Rev. Lett. 95, 213903 (2005). [CrossRef]
  7. Y. Uesugi, Y. Mizutani, S. G. Kruglik, A. G. Shvedko, V. A. Orlovich, and T. Kitgawa, “Characterization of stimulated Raman scattering of hydrogen and methane gases as a light source for picosecond time-resolved Raman spectroscopy,” J. Raman Spectrosc. 31, 339-348 (2000). [CrossRef]
  8. I. G. Koprinkov, A. Suda, P. Wang, and K. Midorikawa, “High-energy conversion efficiency of transient stimulated Raman scattering in methane pumped by the fundamental of a femtosecond Ti:sapphire laser,” Opt. Lett. 24, 1308-1310 (1999). [CrossRef]
  9. J. L. Carlsten, J. M. Telle, and R. G. Wenzel, “Efficient stimulated Raman scattering due to absence of second Stokes growth,” Opt. Lett. 9, 353-355 (1984). [CrossRef] [PubMed]
  10. P. Falsini, R. Pini, R. Salimbeni, M. Vannini, A. F. M. Y. Haider, and P. Buffa, “Simple and efficient H2 Raman conversion of a XeCl laser with a variable numerical aperture coupling geometry,” Opt. Commun. 53, 421-424 (1985). [CrossRef]
  11. D. W. Trainor, H. A. Hyman, and R. M. Heinricks, “Stimulated Raman scattering of XeF laser radiation in H2,” IEEE J. Quantum Electron. 18, 1929-1934 (1982). [CrossRef]
  12. S. F. Fulghum, D. W. Trainor, C. Duzy, and H. A. Hyman“Stimulated Raman scattering of XeF* laser radiation in H2--Part II,” IEEE J. Quantum Electron. 20, 218-222 (1984). [CrossRef]
  13. V. Yu. Baranov, V. M. Barisov, A. Yu. Vinokhodov, Yu. B. Kiryukhin, and Yu. Yu. Stepanov, “Stimulated Raman scattering of radiation from an electric discharge pulse-periodic XeCl laser in H2,” Sov. J. Quantum Electron. 15, 727-729 (1985). [CrossRef]
  14. S. V. Melchenko, A. N. Panchenko, and V. F. Tarasenko, “High power Raman conversion of the discharge XeCl laser,” Opt. Commun. 56, 51-52 (1985). [CrossRef]
  15. X. Cheng, Q. Lou, R. Wang, and Z. Wang, “Efficient XeCl/H2 Raman shifting to a blue-green region,” Appl. Phys. Lett. 51, 76-77 (1987). [CrossRef]
  16. D. A. Haner and I. S. McDermid, “Stimulated Raman shifting of Nd:YAG fourth harmonic (266 nm) in H2, HD, D2,” IEEE J. Quantum Electron. 26, 1292-1298 (1990). [CrossRef]
  17. G. B. Jarvis, S. Mathew, and J. E. Kenny, “Evaluation of Nd:YAG pumped Raman shifter as a broad spectrum light source,” Appl. Opt. 33, 4938-4946 (1994). [CrossRef] [PubMed]
  18. M. A. Gondal, “Laser photoacoustic spectrometer for remote monitoring of atmospheric pollutants,” Appl. Opt. 36, 3195-3201 (1997). [CrossRef] [PubMed]
  19. M. A. Gondal, A. Dastageer, Z. H. Yamani, and A. Arfaj, “Investigation of stimulated Raman scattering of v1 and v2 modes in CH4,” Chem. Phys. Lett. 377, 249-255(2003). [CrossRef]
  20. M. A. Gondal, J. Mastromarino, and U. K. A. Klein, “Laser Doppler velocimeter for remote measurement of polluted water and aerosols discharges,” Opt. Lasers Eng. 38, 589-600(2002). [CrossRef]
  21. M. A. Gondal and J. Mastromarino, “Lidar system for remote environmental studies,” Talanta 53, 147-154(2000). [CrossRef]
  22. M. A. Gondal and J. Mastromarino, “Pulsed laser photoacoustic detection of SO2 near 225.7 nm,” Appl. Opt. 40, 2010-2016(2001). [CrossRef]
  23. M. A. Gondal and A. Dastageer, “High sensitive detection of hazardous SO2 using 266 nm UV laser,” J. Environ. Sci. Health Part A 43 , 10 (2008). [CrossRef]
  24. M. A Gondal and Z. H. Yamani, “Highly sensitive electronically modulated photoacoustic spectrometer for ozone detection,” Appl. Opt. 46, 7083-7090 (2007). [CrossRef] [PubMed]
  25. M. A. Gondal, A. Dastageer, and I. A. Bakhtiari, “Laser based sensor for detection of hazardous gases in the air using waveguide CO2 laser,” J. Environ. Sci. Health Part A 42, 871-878(2007). [CrossRef]
  26. I. M. Tomov, P. Chen, and P. M. Rentzepis, “Efficient Raman conversion of high-repetition-rate, 193 nm picosecond laser-pulses,” J. Appl. Phys. 76, 1409-1412 (1994). [CrossRef]
  27. A. Sakoda, H. Mutoh, and K. Tsukiyama, “Effect of externally injected radiation on amplified spontaneous emission in CO,” Appl. Phys. B 72, 411-415 (2001).
  28. V. Krylov, A. Rabane, O. Ollikainen, D. Erni, U. Wild, V. Bespelov, and D. Staselko, “Femtosecond stimulated Raman scattering in pressurized gases in the ultraviolet and visible spectral ranges,” J. Opt. Soc. Am. B 15, 2910-2916(1998). [CrossRef]
  29. Z. Petrovic and V. Stojanovic, “Anomalous Doppler broadening of hydrogen lines due to excitation by fast neutrals in low pressure townsend discharge,” Mem. Soc. Astron. Ital. Suppl. 7, 172-177 (2005).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited