OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: James C. Wyant
  • Vol. 47, Iss. 33 — Nov. 20, 2008
  • pp: 6257–6265

Fluorescence polarization standard for near infrared spectroscopy and microscopy

Rafal Luchowski, Pabak Sarkar, Shashank Bharill, Gabor Laczko, Julian Borejdo, Zygmunt Gryczynski, and Ignacy Gryczynski  »View Author Affiliations

Applied Optics, Vol. 47, Issue 33, pp. 6257-6265 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (1046 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present studies of polarized absorption [linear dichroism (LD)] and fluorescence polarization of the styryl derivative (LDS 798) embedded in oriented poly(vinyl alcohol) (PVA) films. These films were oriented by progressive stretching up to eight folds. Both vertical and horizontal components of absorptions and fluorescence were measured and dichroic ratios were determined for different film stretching ratios. The dichroic ratio and fluorescence anisotropy values were analyzed as a function of PVA film stretching ratio by fitting according to the previously developed theory. For maximum stretching ratios, exceptionally high anisotropy ( 0.8 ) and polarization ( 0.9 ) values have been measured. The stretched films have high polarization values also for isotropic excitation in a wide spectral range ( 500 700 nm ). Such films can be conveniently used as high polarization standards and we envision they will also have applications in near infrared (NIR) imaging microscopy, where they can be used for correcting an instrumental factor in polarization measurements.

© 2008 Optical Society of America

OCIS Codes
(180.2520) Microscopy : Fluorescence microscopy
(300.6280) Spectroscopy : Spectroscopy, fluorescence and luminescence

ToC Category:

Original Manuscript: June 16, 2008
Revised Manuscript: October 9, 2008
Manuscript Accepted: October 11, 2008
Published: November 19, 2008

Virtual Issues
Vol. 4, Iss. 1 Virtual Journal for Biomedical Optics

Rafal Luchowski, Pabak Sarkar, Shashank Bharill, Gabor Laczko, Julian Borejdo, Zygmunt Gryczynski, and Ignacy Gryczynski, "Fluorescence polarization standard for near infrared spectroscopy and microscopy," Appl. Opt. 47, 6257-6265 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Periasamy, M. Elangovan, E. Elliott, and D. L. Brautigan, “Fluorescence lifetime imaging (FLIM) of green fluorescent fusion proteins in living cells,” Methods Mol. Biol. 183, 89-100 (2002).
  2. A. Squire, P. I. H. Bastiaens, “Three dimensional image restoration in fluorescence lifetime imaging microscopy,” J. Microsc. 193, 36-49 (1999). [CrossRef]
  3. G. Mariott, R. M. Clegg, D. J. Arndt-Jovin, and T. M. Jovin, “Time resolved imaging microscopy, phosphorescence, and delayed fluorescence imaging,” Biophys. J. 60, 1374-1387 (1991).
  4. T. Förster, “Intermolecular energy migration and fluorescence,” Ann. Phys. 2, 55-75 (1948).
  5. S. Hohng, C. Joo, and T. Ha, “Single-molecule three-color FRET,” Biophys. J. 87, 1328-1337 (2004). [CrossRef]
  6. X. Zhuang, H. Kim, M. J. Pereira, H. P. Babcock, N. G. Walter, and S. Chu, “Correlating structural dynamics and function in single ribozyme molecules,” Science 296, 1473-1476 (2002). [CrossRef]
  7. D. W. Piston and M. Rizzo, “FRET by fluorescence polarization microscopy,” Methods Cell Biol. 85, 415-430. [CrossRef]
  8. I. Koyama-Honda, K. Ritchie, T. Fujiwara, R. Iino, H. Murakoshi, R. S. Kasai, and A. Kusumi, “Fluorescence imaging for monitoring the colocalization of two single molecules in living cells,” Biophys. J. 88, 2126-2136 (2004). [CrossRef]
  9. P. H. Lommerse, H. P. Spaink, and T. Schmidt, “In vivo plasma membrane organization: results of biophysical approaches,” Biochim. Biophys. Acta 1664, 119-131 (2004). [CrossRef]
  10. K. Bacia, I. V. Majoul, and P. Schwille, “Probing the endocytic pathway in live cells using dual-color fluorescence cross-correlation analysis,” Biophys. J. 83, 1184-1193 (2002).
  11. N. Kahya, D. Scherfeld, K. Bacia, B. Poolman, and P. Schwille, “Probing lipid mobility of raft-exhibiting model membranes by fluorescence correlation spectroscopy,” J. Biol. Chem. 278, 28109-28115 (2003). [CrossRef]
  12. J. R. Lakowicz, “Fluorescence correlation spectroscopy,” in Principles of Fluorescence Spectroscopy (Springer, 2006), pp. 797-840.
  13. R. M. Clegg, “Fluorescence resonance energy transfer and nucleic acids,” Methods Enzymol. 211, 353-388 (1992). [CrossRef]
  14. A. Kawski, “Excitation energy transfer and its manifestation in isotropic media,” Photochem. Photobiol. 38, 487-508 (1983). [CrossRef]
  15. Z. Gryczynski, I. Gryczynski, and J. R. Lakowicz, “Basics of fluorescence and FRET,” in Molecular Imaging, FRET Microscopy and Spectroscopy, A. Periasamy and N. R. Day, eds. (Oxford, 2005), pp. 21-56.
  16. W. M. Shih, Z. Gryczynski, J. R. Lakowicz, and J. A. Spudich, “A FRET-based sensor reveals large ATP hydrolysis-induced conformational changes and three distinct states of the molecular motor myosin,” Cell 102, 683-694 (2000). [CrossRef]
  17. J. N. Forkey, M. E. Quinlan, M. A. Shaw, J. E. T. Corre, and Y. E. Goldman, “Three-dimensional structural dynamics of myosin V by single-molecule fluorescence polarization,” Nature 422, 399-404 (2003). [CrossRef]
  18. S. Syed, G. E. Snyder, C. Franzini-Armstrong, P. R. Selvin, and Y. E. Goldman, “Adaptability of myosin V by simultaneous detection of position and orientation,” EMBO J. 25, 1795-1803 (2006). [CrossRef]
  19. K. Suhling, J. Siegel, P. M. Lanigan, S. Lévêque-Fort, S. E. Webb, D. Phillips, D. M. Davis, and P. M. French, “Time-resolved fluorescence anisotropt imaging applied to live cells,” Opt. Lett. 29, 584-586 (2004). [CrossRef]
  20. J. A. Dix and A. S. Verkman, “Mapping of fluorescence anisotropy in living cells by ratio imaging,” Biophys. J. 57, 231-240 (1990).
  21. A. H. Clayton, Q. S. Hanley, D. J. Arndt-Jovin, V. Subramaniam, and T. M. Jovin, “Dynamic fluorescence anisotropy imaging microscopy in the frequency domain (rFLIM),” Biophys. J. 83, 1631-1649 (2002).
  22. A. Squire, J. Verveer, O. Rocks, and P. I. Bastiaens, “Red-edge anisotropy enables dynamic imaging of homo-FRET between green fluorescent proteins in cells,” J. Struct. Biol. 147, 62-69 (2004). [CrossRef]
  23. A. G. Harpur, F. S. Wouters, and P. I. H. Bastiaens, “Imaging FRET between spectrally similar GFP molecules in a single cells,” Nat. Biotechnol. 19, 167-169 (2001). [CrossRef]
  24. A. P. Demchenko, I. Gryczynski, Z. Gryczynski, W. Wiczk, H. Malak, and M. Fishman, “Intramolecular dynamics in the environment of the single tryptophan residue in staphylococcal nuclease,” Biophys. Chem. 48, 39-48 (1993). [CrossRef]
  25. Z. Gryczynski and E. Bucci, “A new front-face optical cell for measuring weak fluorescent emissions with time resolution in the picosecond time scale,” Biophys. Chem. 48, 31-38 (1993). [CrossRef]
  26. Z. Gryczynski, E. Bucci, and J. Kusba, “Linear dichroism study of metalloporphyrin transition moments in view of radiationless interactions with tryptophan in hemoproteins,” Photochem. Photobiol. 58, 492-498 (1993). [CrossRef]
  27. R. B. Thompson, I. Gryczynski, and J. Malicka, “Fluorescence polarization standards for high-throughput screening and imaging,” BioTechniques 32, 37-38, 40, 42, (2002).
  28. Y. Tanizaki, “Dichroizm of dyes in the stretched PVA sheet. II. The relation between the optical density ratio and the stretch ratio, and an attempt to analyze relative directions of absorption bands,” Bull. Chem. Soc. Japan 32, 75-80(1959). [CrossRef]
  29. Y. Tanizaki, “The correction of the relation of the optical density ratio to the stretch ratio to the dichroic spectra,” Bull. Chem. Soc. Japan 38, 1798-1799 (1965). [CrossRef]
  30. A. Kawski and Z. Gryczynski, “On the determination of transition-moment directions from emission anisotropy measurements,” Z. Naturforsch. A 41a, 1195-1199 (1986).
  31. A. Kawski and P. Bojarski, “Photoselection of luminescent molecules in isotropic and anisotropic media by multiphoton excitation. Electronic transition moment directions,” Asian J. Spectroscopy 11, 67-94 (2007).
  32. A. Kawski and Z. Gryczynski, “On the determination of transition-moment directions from emission anisotropy measurements,” Z. Naturforsch 42a, 617-621 (1987).
  33. A. Kawski and Z. Gryczynski, “Determination of the transition-moment directions from photoselection in partially oriented systems,” Z. Naturforsch. A 42a, 808-812(1987).
  34. A. Kawski and Z. Gryczynski, “Relation between the emission anisotropy and the dichroic ratio for solute alignment in streached polymer films,” Z. Naturforsch. A 42a, 1396-1398(1987).
  35. C. Horcssler, B. Hardy, and E. Fredericq, “Interaction of ethidium bromide with DNA. Optical and electrooptical study,” Biopolymers 13, 1144-1160 (1974).
  36. Y. Matsuoka, “Film dichroism. 4. Linear dichroism study of orientation behavior of planar molecules in stretched poly(viny1 alcohol) film,” J. Phys. Chem. 84, 1361-1366 (1980). [CrossRef]
  37. R. Sens and K. H. Drexhage, “Fluorescence quantum yield of oxazine and carbazine laser dyes,” J. Lumin. 24/25, 709-712(1981). [CrossRef]
  38. D. Axelrod, “Carbocyanine dye orientation in red cell membrane studied by microscopic fluorescence polarization,” Biophys. J. 26, 557-573 (1979).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited