OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: James C. Wyant
  • Vol. 47, Iss. 33 — Nov. 20, 2008
  • pp: 6300–6306

Generation of an optical vortex with a segmented deformable mirror

Robert K. Tyson, Marco Scipioni, and Jaime Viegas  »View Author Affiliations


Applied Optics, Vol. 47, Issue 33, pp. 6300-6306 (2008)
http://dx.doi.org/10.1364/AO.47.006300


View Full Text Article

Enhanced HTML    Acrobat PDF (913 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present a method for the creation of optical vortices by using a deformable mirror. Optical vortices of integer and fractional charge were successfully generated at a wavelength of 633 nm and observed in the far field ( 2000 mm ). The obtained intensity patterns proved to be in agreement with the theoretical predictions on integer and fractional charge optical vortices. Interference patterns between the created optical vortex carrying beams and a reference plane wave were also produced to verify and confirm the existence of the phase singularities.

© 2008 Optical Society of America

OCIS Codes
(030.7060) Coherence and statistical optics : Turbulence
(260.0260) Physical optics : Physical optics
(350.4600) Other areas of optics : Optical engineering
(050.4865) Diffraction and gratings : Optical vortices
(070.7345) Fourier optics and signal processing : Wave propagation

ToC Category:
Optical Devices

History
Original Manuscript: March 3, 2008
Revised Manuscript: May 5, 2008
Manuscript Accepted: October 28, 2008
Published: November 20, 2008

Citation
Robert K. Tyson, Marco Scipioni, and Jaime Viegas, "Generation of an optical vortex with a segmented deformable mirror," Appl. Opt. 47, 6300-6306 (2008)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-47-33-6300


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. N. B. Baranova and B. Ya. Zel'dovich, “Dislocations of the wave-front surface and zeros of the amplitude,” Zh. Eksp. Teor. Fiz. 80, 1789-1797 (1981).
  2. V. Basistiy, M. S. Soskin, and M. V. Vasnetsov, “Optical wavefront dislocations and their properties,” Opt. Commun. 119, 604-612 (1995). [CrossRef]
  3. V. Y. Bazhenov, M. V. Vasnetsov, and M. S. Soskin, “Laser beams with screw dislocations in their wavefronts,” JETP Lett. 52, 429-431 (1990).
  4. N. B. Simpson, L. Allen, and M. J. Padgett, “Optical tweezers and optical spanners with Laguerre-Gaussian modes,” J. Mod. Opt. 43, 2485-2491 (1996). [CrossRef]
  5. J. E. Curtis, B. A. Koss, and D. G. Grier, “Dynamic holographic optical tweezers,” Opt. Commun. 207, 169-175 (2002). [CrossRef]
  6. J. E. Curtis and D. G. Grier, “Modulated optical vortices,” Opt. Lett. 28, 872-874 (2003). [CrossRef] [PubMed]
  7. Spalding, H. Melville, W. Sibbett, and K. Dholakia, “Applications of spatial light modulators in atom optics,” Opt. Express 11, 158-166 (2003). [CrossRef] [PubMed]
  8. G. Gibson, J. Courtial, M. Padgett, M. Vasnetsov, V. Pas'ko, S. Barnett, and S. Franke-Arnold, “Free-space information transfer using light beams carrying orbital angular momentum,” Opt. Express 12, 5448-5456 (2004). [CrossRef] [PubMed]
  9. Z. Bouchal and R. Celechovsky, “Mixed vortex states of light as information carriers,” New J. Phys. 6, 131-145 (2004). [CrossRef]
  10. R. Čelechovský and Z. Bouchal, “Optical implementation of the vortex information channel,” New J. Phys. 9, 328 (2007). [CrossRef]
  11. C. Paterson, “Atmospheric turbulence and orbital angular momentum of single photons for optical communication,” Phys. Rev. Lett. 94, 153901 (2005). [CrossRef] [PubMed]
  12. G. Gbur and R. K. Tyson, “Vortex beam propagation through atmospheric turbulence and topological charge conservation,” J. Opt. Soc. Am. A 25, 225-230 (2008). [CrossRef]
  13. M. V. Vasnetsov, I. G. Marienko, and M. S. Soskin, “Self-reconstruction of an optical vortex,” JETP Lett. 71, 130-133(2000). [CrossRef]
  14. M. Scipioni, “Propagation of optical vortices through fog,” M.S. thesis (University of North Carolina at Charlotte, 2004).
  15. D. McGloin, G. D. P. Rhodes, D. M. Gherardi, J. Livesey, D. McGloin, H. Melville, T. Freegarde, and K. Dholakia, “Atom guiding along high order Laguerre-Gaussian light beams formed by spatial light modulation,” J. Mod. Opt. 53, 547-556 (2006). [CrossRef]
  16. N. R. Heckenberg, R. McDuff, C. P. Smith, and A. G. White, “Generation of optical phase singularities by computer-generated holograms,” Opt. Lett. 17, 221-223 (1992). [CrossRef] [PubMed]
  17. J. Courtial and M. J. Padgett, “Performance of cylindrical lens mode converter for producing Laguerre-Gaussian modes,” Opt. Commun. 159, 13-18 (1999). [CrossRef]
  18. D. Pal Ghai, P. Senthilkumaran, and R. S. Sirohi, “Adaptive helical mirror for generation of optical phase singularity,” Appl. Opt. 47, 1378-1383 (2008). [CrossRef] [PubMed]
  19. Y. Izdebskaya, V. Shvedov, and A. Volyar, “Generation of higher-order optical vortices by a dielectric wedge,” Opt. Lett. 30, 2472-2474 (2005). [CrossRef] [PubMed]
  20. X. C. Yuan, B. P. S. Ahluwalia, S. H. Tao, W. C. Cheong, L. S. Zhang, J. Lin, J. Bu, and R. E. Burge, “Wavelength-scalable micro-fabricated wedge for generation of optical vortex beam in optical manipulation,” Appl. Phys. B 86, 209-213 (2007). [CrossRef]
  21. C. Rotschild, S. Zommer, S. Moed, O. Hershcovitz, and S. G. Lipson, “Adjustable spiral phase plate,” Appl. Opt. 43, 2397-2399 (2004). [CrossRef] [PubMed]
  22. V. V. Kotlyar, A. A. Almazov, S. N. Khonina, V. A. Soifer, H. Elfstrom, and J. Turunen, “Generation of phase singularity through diffracting a plane or Gaussian beam by a spiral phase plate,” J. Opt. Soc. Am. A 22, 849-861 (2005). [CrossRef]
  23. C. S. Guo, D. M. Xue, Y. J. Han, and J. Ding, “Optimal phase steps of multi-level spiral phase plates,” Opt. Commun. 268, 235-239 (2006). [CrossRef]
  24. S. S. R. Oemrawsingh, J. A. W. van Houwelingen, E. R. Eliel, J. P. Woerdman, E. J. K. Verstegen, J. G. Kloosterboer, and G. W. 't Hooft, “Production and characterization of spiral phase plates for optical wavelengths,” Appl. Opt. 43, 688-694 (2004). [CrossRef] [PubMed]
  25. K. J. Moh, X.-C. Yuan, W. C. Cheong, L. S. Zhang, J. Lin, B. P. S. Ahluwalia, and H. Wang, “High-power efficient multiple optical vortices in a single beam generated by a kinoform-type spiral phase plate,” Appl. Opt. 45, 1153-1161 (2006). [CrossRef] [PubMed]
  26. J. Lin, X. Yuan, S. H. Tao, and R. E. Burge, “Synthesis of multiple collinear helical modes generated by a phase-only element,” J. Opt. Soc. Am. A 23, 1214-1218 (2006). [CrossRef]
  27. M. A. Helmbrecht, T. Juneau, M. Hart, and N. Doble, “Segmented MEMS deformable-mirror technology for space applications,” Proc. SPIE 6223, 622305 (2006). [CrossRef]
  28. Jonathan Leach, Eric Yao, and Miles J. Padgett, “Observation of the vortex structure of a non-integer vortex beam,” New J. Phys. 6, 71-78 (2004). [CrossRef]
  29. S. S. R. Oemrawsingh, E. R. Eliel, J. P. Woerdman, J. K. Verstegen, J. G. Kloosterboer, and G. W. 't Hooft, “Half integral spiral phase plates for optical wavelengths,” J. Opt. A 6, S288-S290 (2004). [CrossRef]
  30. W. M. Lee, X.-C. Yuan, and K. Dholakia, “Experimental observation of optical vortex evolution in a Gaussian beam with an embedded fractional phase step,” Opt. Commun. 239, 129 (2004). [CrossRef]
  31. V. Basistiy, V. A. Pas'ko, V. V. Slyusa, M. S. Soskin, and M. V. Vasnetsov, “Synthesis and analysis of optical vortices with fractional topological charges,” J. Opt. A 6, S166-S169(2004). [CrossRef]
  32. M. V. Berry, “Optical vortices evolving from helicoidal integer and fractional phase steps,” J. Opt. A 6, 259-268 (2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited