OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: James C. Wyant
  • Vol. 47, Iss. 34 — Dec. 1, 2008
  • pp: 6357–6365

Multispectral illumination and image processing techniques for active millimeter-wave concealed object detection

Lixiao Zhang, Johan Stiens, Amna Elhawil, and Roger Vounckx  »View Author Affiliations


Applied Optics, Vol. 47, Issue 34, pp. 6357-6365 (2008)
http://dx.doi.org/10.1364/AO.47.006357


View Full Text Article

Enhanced HTML    Acrobat PDF (828 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Active millimeter-wave imaging systems for concealed object detection offer the possibility of much higher image contrast than passive systems, especially in indoor applications. By studying active millimeter-wave images of different test objects derived in the W band, we show that multispectral illumination is critical to the detectability of targets. We also propose to use image change detection techniques, including image differencing, normalized difference vegetation index, and principle component analysis to process the multispectral millimeter-wave images. The results demonstrate that multispectral illumination can significantly reveal the object features hidden by image artifacts and improve the appearance of the objects.

© 2008 Optical Society of America

OCIS Codes
(030.1670) Coherence and statistical optics : Coherent optical effects
(100.0100) Image processing : Image processing
(110.2960) Imaging systems : Image analysis
(110.4234) Imaging systems : Multispectral and hyperspectral imaging
(110.6795) Imaging systems : Terahertz imaging

ToC Category:
Image Processing

History
Original Manuscript: July 7, 2008
Revised Manuscript: October 2, 2008
Manuscript Accepted: October 24, 2008
Published: November 19, 2008

Citation
Lixiao Zhang, Johan Stiens, Amna Elhawil, and Roger Vounckx, "Multispectral illumination and image processing techniques for active millimeter-wave concealed object detection," Appl. Opt. 47, 6357-6365 (2008)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-47-34-6357


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. C. Kemp, “Millimeter wave and terahertz technology for the detection of concealed threats--A review,” Proc. SPIE 6402, 6402D (2006).
  2. R. Appleby and B. Wallace, “Standoff detection of weapons and contraband in the 100 GHz to 1 THz region,” IEEE Trans. Antennas Propag. 55, 2944-2955 (2007). [CrossRef]
  3. R. Appleby, R. N. Anderton, S. Price, N. A. Salmon, G. N. Sinclair, P. R. Coward, A. R. Barnes, P. D. Munday, M. Morore, A. H. Lettington, and A. Robertson, “Mechanically scanned real-time passive millimeter-wave imaging at 94 GHz,” in Passive Millimeter-Wave Imaging Technology VI and Radar Sensor Technology VII, R. Appleby, D. A. Wikner, R. Trebits, and J. L. Kurtz, eds. (SPIE, 2003), pp. 1-6.
  4. C. A. Martin and V. G. Kolinko, “Concealed weapons detection with an improved passive millimeter-wave imager,” Proc. SPIE 5410, 252-259 (2004). [CrossRef]
  5. A. H. Lettington, D. Dunn, N. E. Alexander, A. Wabby, B. N. Lyons, R. Doyle, J. Walshe, M. Attia, and I. Blankson, “Design and development of a high performance passive millimeter-wave imager for aeronautical applications,” Opt. Eng. 44, 093202 (2005). [CrossRef]
  6. D. M. Sheen, D. L. McMakin, and T. E. Hall, “Cylindrical millimeter-wave imaging technique and applications,” Proc. SPIE 6548, 654809 (2007). [CrossRef]
  7. D. M. Sheen, D. L. McMakin, and T. E. Hall, “Speckle in active millimeter-wave and terahertz imaging and spectroscopy,” Proc. SPIE 6211, 62110A (2006). [CrossRef]
  8. P. T. Hue, F. Gumbmann, W. Jochen, and L. Schmidt, “A fast scanning W-band system of advanced millimeter-wave shot range imaging applications, ” Proceedings of IEEE The 3rd European Radar Conference (IEEE, 2006), pp. 146-149.
  9. E. N. Grossman and A. J. Miller, “Active millimeter-wave imaging for concealed weapons detection,” Proc. SPIE 5077, 62-70 (2003). [CrossRef]
  10. P. F. Goldsmith, C.-T. Hsieh, and G. R. Huguenin, “Focal plane imaging systems for millimeter wavelength,” IEEE Trans. Microwave Theory Tech. 41, 1664-1675 (1993). [CrossRef]
  11. E. L. Jacobs, S. Moyer, C. C. Franck, F. C. Delucia, C. Casto, D. T. Petkie, S. R. Murrill, and C. E. Halford, “Concealed weapon identification using terahertz imaging sensors,” Proc. SPIE 6212, 62120J (2006). [CrossRef]
  12. I. Jäger, L. Zhang, J. Stiens, G. Koers, H. Sahli, and R. Vounckx, “W-band speckle contrast images for inspection of concealed object,” Proc. SPIE 6616, 66160Y (2007).
  13. N. E. Alexander, C. C. Andres, and R. Gonzalo, “Multispectral mm-wave imaging: materials and images,” Proc. SPIE 6948, 694803 (2008). [CrossRef]
  14. Committee on Assessment of Security Technologies for Transportation of National Research Council, Assessment of Millimeter-Wave and Terahertz Technology for Detection and Identification of Concealed Explosives and Weapons (The National Academies, 2007).
  15. A. Elhawil, G. Koers, L. Zhang, and J. Stiens, “Reliable method for material characterization using a quasi-optical free-space measurement in the W band,” IET Sci. Meas. Technol. (to be published).
  16. J. W. Goodman, Introduction to Fourier Optics, 3rd ed. (McGraw-Hill, 2005).
  17. G. Koers, “Noise suppression in active millimeter wave imaging systems,” Ph.D dissertation (Vrije Universiteit Brussel, 2006).
  18. G. Koers, I. Ocket, Q. Feng, V. Tavakol, I. Jäger, B. Nauwelaers, and J. Stiens, “Study of active millimeter-wave image speckle reduction by Hadamard phase pattern illumination,” J. Opt. Soc. Am. A 25, 312-317 (2008). [CrossRef]
  19. A. Elhawil, G. Koers, L. Zhang, J. Stiens, and R. Vounckx, “Comparison between two optimization algorithms to compute the complex permittivity of dielectric multilayer structures using a free space quasi-optical method in W band,” IET Sci. Meas. Technol. (to be published).
  20. D. Lu, P. Mausel, E. Brondizio, and E. Moran, “Change detection techniques,” Int. J. Remote Sens. 25, 2365-2407 (2004). [CrossRef]
  21. A. Singh, “Digital change detection techniques using remotely sensed data,” Int. J. Remote Sens. 10, 989-1003 (1989). [CrossRef]
  22. C. J. Tucker, “Red and photographic infrared linear combination for monitoring vegetation,” Remote Sens. Environ. 8, 127-150 (1979). [CrossRef]
  23. W. K. Michener and P. F. Houhoulis, “Detection of vegetation changes associated with extensive flooding in a forested ecosystem,” Photogram. Eng. Remote Sens. 63, 1363-1374(1997).
  24. P. Coppin, I. Jonckheere, K. Nackaerts, and B. Muys, “Digital change detection in ecosystem monitoring: a review,” Int. J. Remote Sens. 10, 1565-1596 (2004).
  25. S. R. Murrill, E. L. Jacobs, S. K. Moyer, C. E. Halford, S. T. Griffin, F. C. De Lucia, D. T. Petkie, and C. C. Franck, “Terahertz imaging system performance model for concealed weapon identification,” Proc. SPIE 5989, 59891E(2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited