OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: James C. Wyant
  • Vol. 47, Iss. 34 — Dec. 1, 2008
  • pp: 6371–6384

Broadband, high-resolution spatial heterodyne spectrometer

James E. Lawler, Zac E. Labby, John M. Harlander, and Frederick L. Roesler  »View Author Affiliations


Applied Optics, Vol. 47, Issue 34, pp. 6371-6384 (2008)
http://dx.doi.org/10.1364/AO.47.006371


View Full Text Article

Enhanced HTML    Acrobat PDF (830 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Design and performance parameters for a broadband, high-resolution spatial heterodyne spectrometer (SHS) are reported. The Mark 1 SHS achieves more than a factor of 5 in continuous wavenumber coverage with a design resolving power in the hundreds of thousands.

© 2008 Optical Society of America

OCIS Codes
(300.6190) Spectroscopy : Spectrometers
(300.6300) Spectroscopy : Spectroscopy, Fourier transforms
(300.6310) Spectroscopy : Spectroscopy, heterodyne
(300.6320) Spectroscopy : Spectroscopy, high-resolution
(300.6540) Spectroscopy : Spectroscopy, ultraviolet

ToC Category:
Spectroscopy

History
Original Manuscript: August 22, 2008
Revised Manuscript: October 6, 2008
Manuscript Accepted: October 15, 2008
Published: November 24, 2008

Citation
James E. Lawler, Zac E. Labby, John M. Harlander, and Frederick L. Roesler, "Broadband, high-resolution spatial heterodyne spectrometer," Appl. Opt. 47, 6371-6384 (2008)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-47-34-6371


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. T. Dohi and T. Suzuki, “Attainment of high-resolution holographic Fourier transform spectroscopy,” Appl. Opt. 10, 1137-1140 (1971).
  2. A. Kitade and K. Yoshihara, “Application of holography to infrared spectroscopy,” Jpn. J. Appl. Phys. 13, 87-92(1974). [CrossRef]
  3. H. J. Caulfield, “Holographic spectroscopy,” Opt. Eng. 13, 481-482 (1974).
  4. K. Yoshihara, K. Nakashima, and M. Higuchi, “Holographic spectroscopy using a Mach-Zehnder interferometer,” Jpn. J. Appl. Phys. 15, 1169-1170 (1976). [CrossRef]
  5. T. H. Barnes, T. Eiju, and K. Matsuda, “Heterodyned photodiode array Fourier-transform spectrometer,” Appl. Opt. 25, 1864-1866 (1986).
  6. S. Minami, “Fourier-transform spectroscopy using image sensors,” Mikrochim. Acta 3, 309-324 (1987).
  7. N. Douglas, H. Butcher, and M. A. Melis, “Heterodyned, holographic spectroscopy--first results with the FRINGHE spectrometer,” Astrophys. Space Sci. 171, 307-318 (1990). [CrossRef]
  8. H. N. Butcher, N. Douglas, S. Frandsen, and F. Maaswinkel, “A practical non-scanning FTS for astronomy,” in High-Resolution Fourier Transform Spectroscopy, Vol. 6 of 1989 OSA Technical Digest Series (Optical Society of America, 1989), pp. 9-12.
  9. J. M. Harlander and F. L. Roesler, “Spatial heterodyne spectroscopy. A novel interferometric technique for ground-based and space astronomy,” Proc. SPIE 1235, 622-633 (1990). [CrossRef]
  10. F. L. Roesler and J. M. Harlander, “Spatial heterodyne spectroscopy: interferometric performance at any wavelength without scanning,” Proc. SPIE 1318, 234-243 (1990). [CrossRef]
  11. J. M. Harlander, F. L. Roesler, J. G. Cardon, C. R. Englert, and R. R. Conway, “SHIMMER: a spatial heterodyne spectrometer for remote sensing of Earth's middle atmosphere,” Appl. Opt. 41, 1343-1352 (2002). [CrossRef]
  12. J. M. Harlander, F. L. Roesler, C. R. Englert, J. G. Cardon, R. R. Conway, C. M. Brown, and J. Wimperis, “Robust monolithic ultraviolet interferometer for the SHIMMER instrument on STPSat-1,” Appl. Opt. 42, 2829-2834 (2003). [CrossRef]
  13. J. M. Harlander, “Spatial heterodyne spectroscopy: interferometric performance at any wavelength without scanning,” Ph.D. thesis (University of Wisconsin Madison, 1991).
  14. J. Harlander, R. J. Reynolds, and F. L. Roesler, “Spatial heterodyne spectroscopy for the exploration of diffuse interstellar emission lines at far ultraviolet wavelengths,” Astrophys. J. 396, 730-740 (1992). [CrossRef]
  15. J. E. Lawler, Z. Labby, F. L. Roesler, and J. M. Harlander, “A spatial heterodyne spectrometer for laboratory astrophysics; first interferogram,” presented at the NASA Laboratory Astrophysics Workshop, Las Vegas, Nevada, 14-16 February 2006.
  16. J. E. Lawler, J. M. Harlander, Z. Labby, and F. L. Roesler, “A broadband, high-resolution spatial heterodyne spectrometer,” presented at the 9th International Colloquium on Atomic Spectra and Oscillator Strengths for Astrophysical and Laboratory Plasmas (ASOS-9), Lund University, Lund, Sweden, 7-10 August 2007.
  17. J. M. Harlander, J. E. Lawler, Z. Labby, and F. L. Roesler, “A high-resolution broad spectral range spatial heterodyne spectrometer for UV laboratory astrophysics,” presented at the Joint Fourier Transform Spectroscopy and Hyperspectral Imaging and Sounding of the Environment Meeting of the Optical Society of America, Santa Fe, New Mexico, 11-15 February 2007.
  18. S. Watchorn, F. L. Roesler, J. M. Harlander, K. P. Jaehnig, R. J. Reynolds, and W. T. Sanders, “Development of the spatial heterodyne spectrometer for VUV remote sensing of the interstellar medium,” Proc. SPIE 4498, 284-295 (2001).
  19. Princeton Instruments, “X-ray cameras,” http://www.piacton.com/products/xraycam/.
  20. J. H. Giles, T. D. Ridder, R. H. Williams, D. A. Jones, and M. B. Denton, “Product review: selecting a CCD camera,” Anal. Chem. 70, 663A (1998). [CrossRef]
  21. T. Guy, “Choosing a CCD sensor for high-performance imaging,” Electronic Products (2004), http://www2.electronicproducts.com/Choosing_a_CCD_sensor_for_high-performance_imaging-article-kodak-feb2004-html.aspx.
  22. Newport-Richardson Gratings, “Table 4: echelle gratings,” http://gratings.newport.com/products/table4.asp.
  23. A. Offner, “Unit power imaging catoptric anastigmat,” U.S. patent 3,748,015 (24 June 1973).
  24. J. W. Brault, “High-precision Fourier transform spectrometry: the critical role of phase corrections,” Mikrochim. Acta 3, 215-227 (1987).
  25. R. C. M. Learner, A. P. Thorne, I. Wynnejones, J. W. Brault, and M. C. Abrams, “Phase correction of emission-line Fourier-transform spectra,” J. Opt. Soc. Am. A 12, 2165-2717(1995). [CrossRef]
  26. C. R. Englert, J. M. Harlander, J. G. Cardon, and F. L. Roesler, “Correction of phase distortion in spatial heterodyne spectroscopy,” Appl. Opt. 43, 6680-6687 (2004). [CrossRef]
  27. W. J. Smith, “Image formation: geometrical and physical optics,” in Handbook of Optics, sponsored by the Optical Society of America, W.G.Driscoll and W.Vaughan, eds. (McGraw-Hill, 1978), Sect. 2, pp. 2-60.
  28. D. J. Schroeder, Astronomical Optics, 2nd ed. (Academic, 2000), p. 132.
  29. A. Offner, “Catoptric anastigmat afocal optical system,” U.S. patent 3,674,334 (4 July 1972).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited