OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: James C. Wyant
  • Vol. 47, Iss. 34 — Dec. 1, 2008
  • pp: 6470–6476

Software field widening of a Fourier-transform spectrometer using a large focal plane array

Simon A. Roy, Simon Potvin, and Jérôme Genest  »View Author Affiliations


Applied Optics, Vol. 47, Issue 34, pp. 6470-6476 (2008)
http://dx.doi.org/10.1364/AO.47.006470


View Full Text Article

Enhanced HTML    Acrobat PDF (1408 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Software field widening of a Fourier-transform spectrometer is investigated with a large multielement focal plane array detector. Experimental results are presented that stem from previous work in instrument line-shape correction. Here, pixels with calibrated wavenumber scales are binned to emulate a large-area single-pixel detector. The field of view and the signal-to-noise ratio are accordingly increased. A monochromatic source is used to characterize signal-to-noise ratio gain, and limitations are discussed. This work is motivated by the emergence of affordable infrared integrating cameras, which enable Fourier-transform spectrometers to perform massively parallel spatial sampling.

© 2008 Optical Society of America

OCIS Codes
(070.6020) Fourier optics and signal processing : Continuous optical signal processing
(120.6200) Instrumentation, measurement, and metrology : Spectrometers and spectroscopic instrumentation
(300.6300) Spectroscopy : Spectroscopy, Fourier transforms

ToC Category:
Spectroscopy

History
Original Manuscript: August 8, 2008
Revised Manuscript: October 28, 2008
Manuscript Accepted: October 29, 2008
Published: November 27, 2008

Citation
Simon A. Roy, Simon Potvin, and Jérôme Genest, "Software field widening of a Fourier-transform spectrometer using a large focal plane array," Appl. Opt. 47, 6470-6476 (2008)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-47-34-6470


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. J. Bell and R. N. Bracewell, Introductory Fourier Transform Spectroscopy (Academic, 1972).
  2. J. Genest and P. Tremblay, “Instrument line shape of Fourier-transform spectrometers: analytic solutions for nonuniformly illuminated off-axis detectors,” Appl. Opt. 38, 5438-5446(1999). [CrossRef]
  3. A. Kuze, H. Nakajima, J. Tanii, and Y. Sasano, “Conceptual design of solar occultation FTS for inclined-orbit satellite (SOFIS) on GCOM-A1,” Proc. SPIE 4131, 4541-4548 (2000).
  4. J.-P. Bouchard, P. Tremblay, R. Desbiens, and F. Bouffard, “Detailed line-shape measurements using a high resolution, high divergence Fourier transform spectrometer,” in Fourier Transform Spectroscopy, OSA Trends in Optics and Photonics Series (Optical Society of America, 2003), Vol. 84, pp. 25-27.
  5. M. Chamberland, V. Farley, L. Belhumeur, F. Williams, J. Lawrence, P. Tremblay, and R. Desbiens, “The instrument lineshape, an imperative parameter for the absolute spectral calibration of an FTS,” Fourier Transform Spectroscopy, OSA Trends in Optics and Photonics Series (Optical Society of America, 2003), Vol. 84, pp. 160-166.
  6. J. Connes, “Domaine d'utilisation de la méthode par transformée de Fourier,” J. Phys. Radium 19, 197-208 (1958). [CrossRef]
  7. E. Niple, A. Pires, and K. Poultney, “Exact modeling of line-shape and wavenumber variations for aff-axis detectors in Fourier-transform spectrometers (FTS) sensor systems,” Proc. SPIE 0364, 11-20 (1982).
  8. R. Desbiens, P. Tremblay, J. Genest, and J.-P. Bouchard, “Matrix form for the instrument line shape of Fourier-transform spectrometers yielding a fast integration algorithm to theoretical spectra,” Appl. Opt. 45, 546-557 (2006). [CrossRef]
  9. R. Desbiens, J. Genest, P. Tremblay, and J.-P. Bouchard, “Correction of instrument line shape in Fourier transform spectrometry using matrix inversion,” Appl. Opt. 45, 5270-5280(2006). [CrossRef]
  10. S. A. Roy, S. Potvin, and J. Genest, “Fast line shape correction procedure for imaging Fourier-transform spectrometers,” Appl. Opt. 46, 4674-4679 (2007). [CrossRef]
  11. S. A. Roy, “Data processing pipelines tailored for imaging Fourier-transform spectrometers,” Ph.D. dissertation (Université Laval, 2008).
  12. D. Lambert and P. Richards, “Martin-Puplett interferometer: an analysis,” Appl. Opt. 17, 1595-1602 (1978).
  13. J. Genest and P. Tremblay, “Modeling the instrument line shape of Fourier-transform spectrometers within the framework of partial coherence,” Appl. Opt. 44, 3912-3924 (2005). [CrossRef]
  14. R. Desbiens, J. Genest, and P. Tremblay, “Radiometry in line-shape modeling of Fourier-transform spectrometers,” Appl. Opt. 41, 1424-1432 (2002). [CrossRef]
  15. L. Mertz, Transformations in Optics (Wiley, 1965).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited