OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: James C. Wyant
  • Vol. 47, Iss. 34 — Dec. 1, 2008
  • pp: H52–H61

Simulating irradiance during lunar eclipses: the spherically symmetric case

Michael Vollmer and Stanley David Gedzelman  »View Author Affiliations


Applied Optics, Vol. 47, Issue 34, pp. H52-H61 (2008)
http://dx.doi.org/10.1364/AO.47.000H52


View Full Text Article

Enhanced HTML    Acrobat PDF (5420 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Irradiance during total lunar eclipses is simulated using a pinhole model. The Moon is illuminated by direct sunlight that is refracted into the Earth’s shadow as it passes through the atmosphere at the terminator but is depleted by scattering by molecules, extinction by aerosol particles, absorption by ozone, and obstruction by clouds and elevated land. On a spherical, sea-level Earth, and a cloudless, molecular atmosphere with no ozone, the eclipsed Moon appears red and calculated irradiance at the center of the umbra is reduced by a factor of about 2400 from direct moonlight. Selective absorption mainly of light around 600 nm by stratospheric ozone turns the periphery of the umbra pale blue. Typical distributions of aerosol particles, ozone, mountains, and clouds around the terminator reduce irradiance by an additional factor of the order of 100.

© 2008 Optical Society of America

OCIS Codes
(010.1290) Atmospheric and oceanic optics : Atmospheric optics
(010.4950) Atmospheric and oceanic optics : Ozone
(290.1090) Scattering : Aerosol and cloud effects
(010.5620) Atmospheric and oceanic optics : Radiative transfer

History
Original Manuscript: April 29, 2008
Revised Manuscript: July 11, 2008
Manuscript Accepted: July 11, 2008
Published: August 29, 2008

Citation
Michael Vollmer and Stanley David Gedzelman, "Simulating irradiance during lunar eclipses: the spherically symmetric case," Appl. Opt. 47, H52-H61 (2008)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-47-34-H52


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. F. Link, “Lunar eclipses,” in Physics and Astronomy of the Moon, Z. Kopal, ed., 1st ed. (Academic, 1962), pp. 161-229; more recent mostly identical version in Z. Kopal, ed., Advances in Astronomy and Astrophysics (Academic, 1972), Vol. 9, pp. 68-144.
  2. R. Gerharz, “Photometric brightness asymmetry during a lunar eclipse,” Arch. Met. Geoph. Biokl. Ser. A 18, 221-226(1969). [CrossRef]
  3. R. W. Shorthill, “Infrared atlas charts of the eclipsed Moon,” Moon 7, 22-45 (1973). [CrossRef]
  4. F. Link, “Some remarks on Danjon's law,” Moon 11, 137-140(1974). [CrossRef]
  5. N. Sekiguchi, “Photometry of the lunar surface during lunar eclipses,” Moon Planets 23, 99-107 (1980).
  6. N. Sekiguchi, “Abnormally dark lunar eclipse on December 30, 1982,” Moon Planets 29, 195-198 (1983). [CrossRef]
  7. R. A. Keen, “Volcanic aerosols and lunar eclipses,” Science 222, 1011-1013 (1983). [CrossRef] [PubMed]
  8. T. Nakamura, T. Hirayama, and M. Noguchi, “A new photographic method for mapping lunar eclipse shadow,” Earth, Moon, Planets 35, 55-71 (1986). [CrossRef]
  9. S. Dvorak, “Serendipitous photometric observations of the October 2004 Lunar eclipse,” J. Am. Ass. Var. Star Observers 34, 72-75 (2006).
  10. A. Mallama, “Eclipses, atmospheres and global change,” self-published, Bowie, Maryland (1996), contact: Anthony_Mallama@raytheon.com
  11. A. Mallama, “Light curve model for the Galilean satellites during Jovian eclipses,” Icarus 92, 324-331 (1991). [CrossRef]
  12. A. Mallama, “CCD photometry for Jovian eclipses of the Galilean satellites,” Icarus 97, 298-302 (1992). [CrossRef]
  13. A. Mallama, B. A. Krobusek, D. F. Collins, P. Nelson, and J. Park, “The radius of Jupiter and its polar haze,” Icarus 144, 99-103 (2000). [CrossRef]
  14. A. Mallama, “Predictions for eclipses of Nereid by Neptune,” Icarus 187, 620-622 (2007). [CrossRef]
  15. O. S. Ugolnikov and I. A. Maslov, “Atmospheric aerosol limb scanning based on the lunar eclipses photometry,” J. Quant. Spectrosc. Radiat. Transfer 102, 499-512 (2006). [CrossRef]
  16. O. S. Ugolnikov and I. A. Maslov, “Altitude and latitude distribution of atmospheric aerosol and water vapor from the narrow-band lunar eclipse photometry,” preprint server http://eprintweb.org/S/authors/All/ug/Ugolnikov, arXiv 0706.0660 (June 2007).
  17. N. Hernitschek, E. Schmidt, and M. Vollmer, “Lunar eclipse photometry: absolute luminance measurements and modeling,” Appl. Opt. 47, H62-H71 (2008).
  18. http://www.skyandtelescope.com/community/gallery/skyevents/15836532.html, “Photo gallery: total lunar eclipse, 2-20-2008,” Sky Telesc. (April 2008).
  19. See the paper by S. Gedzelman and M. Vollmer, “Simulating irradiance and color during lunar eclipses using satellite data,” elsewhere in the Light and Color feature.
  20. K. P. Möllmann and M. Vollmer, “Measurements and predictions of the illuminance during a solar eclipse,” Eur. J. Phys. 27, 1299-1314 (2006). [CrossRef]
  21. A. I. Mahan, “Astronomical refraction--some history and theories,” Appl. Opt. 1, 497-511 (1962). [CrossRef]
  22. A. D. Wittmann, “Astronomical refraction: formulas for all zenith distances,” Astron. Nachr. 318/5, 305-312 (1997). [CrossRef]
  23. A. T. Young, “Air mass and refraction,” Appl. Opt. 33, 1108-1110 (1994). [PubMed]
  24. L. K. Kristensen, “Astronomical refraction and airmass,” Astron. Nachr. 319, 193-198 (1998). [CrossRef]
  25. M. Vollmer and S. D. Gedzelman, “Colours of the Sun and Moon: the role of the optical air mass,” Eur. J. Phys. 27, 299-309 (2006). [CrossRef]
  26. http://history.nasa.gov/SP-168/section2b.htmm, see p. 128.
  27. Sunrise, Earth Limb, SW Pacific Ocean, Photo STS047-54-018 http://images.jsc.nasa.gov/.
  28. E. C. Y. Inn and Y. Tanaka, “Absorption coefficient of ozone in the ultraviolet and visible regions,” J. Opt. Soc. Am. 43, 870-873 (1953). [CrossRef]
  29. A. M. Amoruso, C. A. Di Sarra, and G. Fiocco, “Absorption cross sections of ozone in the 590- to 610-nm region at T=230 K and T=299 K,” J. Geophys. Res. 95, 20565-20568, (1990). [CrossRef]
  30. M. Hess, P. Koepke, and I. Schult, “Optical properties of aerosols and clouds: the software package OPAC,” Bull. Am. Meteorol. Soc. 79, 831-844, (1998). [CrossRef]
  31. O. Dubovik, B. N. Holben, T. F. Eck, A. Smirnov, Y. J. Kaufman, M. D. King, D. Tanre, and I. Slutsker, “Variability of absorption and optical properties of key aerosol types observed in worldwide locations,” J. Atmos. Sci. 59, 590-608 (2002). [CrossRef]
  32. R. W. Bergstrom, P. Pilewskie, B. Schmid, and P. B. Russell, “Estimates of the spectral aerosol single scattering albedo and aerosol radiative effects during SAFARI 2000,” J. Geophys. Res. 108, 8474 (2003), doi:10.1029/2002JD002435.. [CrossRef]
  33. P. B. Russell, J. Redemann, B. Schmid, R. W. Bergstrom, J. M. Livingston, D. M. McIntosh, S. A. Ramirez, S. Hartley, P. V. Hobbs, P. K. Quinn, C. M. Carricok, M. J. Rood, E. Öströml, K. J. Noone, W. von Hoyningen-Huene, and L. Remer, “Comparison of aerosol single scattering albedos derived by diverse techniques in two North Atlantic experiments,” J. Atmos. Sci. 59, 609-619, (2002). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited