OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: James C. Wyant
  • Vol. 47, Iss. 35 — Dec. 10, 2008
  • pp: 6477–6487

Dense wavelength-division multiplexing dispersion compensators based on chirped and apodized Fibonacci structures: CA- F C (j,n)

Saeed Golmohammadi, Mohammad Kazem Moravvej-Farshi, Ali Rostami, and Abbas Zarifkar  »View Author Affiliations

Applied Optics, Vol. 47, Issue 35, pp. 6477-6487 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (1445 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Chromatic dispersion compensation is an essential feature of high speed dense wavelength-division multiplexing (DWDM) systems. We propose a dispersion compensator structure whose characteristics meet the optical DWDM system requirements. The proposed structure is based on Fibonacci quasi-periodic multilayer structures composed of layers with large index differences. Studying the dispersive properties of Fibonacci structures with generation numbers j = 3 and 4, and calculating group delay (GD) and group velocity dispersion (GVD) of their reflection bands, we have demonstrated that to have a smooth GD and almost a constant GVD in each band of a DWDM system, one needs not only to suitably chirp the structure refractive index profile, but also must properly apodize it. We also demonstrate the possibility of achieving high slope GDs and large GVDs by means of high order Fibonacci structures with thicker layers. Finally, by varying the layer dimensions and refractive indices as well as Fibonacci’s order, one can design DWDM dispersion compensators suitable for distances as long as 220 km .

© 2008 Optical Society of America

OCIS Codes
(050.1590) Diffraction and gratings : Chirping
(060.4510) Fiber optics and optical communications : Optical communications
(220.1230) Optical design and fabrication : Apodization
(230.4170) Optical devices : Multilayers
(130.2035) Integrated optics : Dispersion compensation devices
(230.2035) Optical devices : Dispersion compensation devices

ToC Category:
Integrated Optics

Original Manuscript: July 3, 2008
Revised Manuscript: September 24, 2008
Manuscript Accepted: September 28, 2008
Published: November 28, 2008

Saeed Golmohammadi, Mohammad Kazem Moravvej-Farshi, Ali Rostami, and Abbas Zarifkar, "Dense wavelength-division multiplexing dispersion compensators based on chirped and apodized Fibonacci structures: CA-FC(j,n)," Appl. Opt. 47, 6477-6487 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. Morimoto, I. Kobayashi, H. Hiramatsu, K. Mukasa, R. Sugizaki, Y. Suzuki, and Y. Kamikura, “Development of dispersion compensation cable using reverse dispersion fiber,” in Proceedings of the Fifth Asia-Pacific Conference on Communications, 1999 and Fourth Optoelectronics and Communications Conference (APCC/OECC, 1999), Vol. 2, pp. 1590-1593. [CrossRef]
  2. M. Kazunori and T. Yagi, “Dispersion flat and low nonlinear optical link with new type of reverse dispersion fiber (RDF-60),” in Digest of Optical Fiber Communication Conference (Optical Society of America, 2001), paper TuH7.
  3. G. Lenz and C. K. Madsen, “General optical all-pass filter structures for dispersion control in WDM systems,” J. Lightwave Technol. 17, 1248-1254 (1999). [CrossRef]
  4. B. J. Eggleton, T. Stephens, P. A. Krug, G. Dhosi, Z. Brodzeli, and F. Ouellette, “Dispersion compensation using a fiber grating in transmission,” Electron. Lett. 32, 1610-1611 (1996). [CrossRef]
  5. N. M. Litchinitser, B. J. Eggleton, and D. B. Patterson, “Fiber Bragg gratings for dispersion compensation in transmission: theoretical model and design criteria for nearly ideal pulse reconstruction,” J. Lightwave Technol. 15, 1303-1313 (1997). [CrossRef]
  6. R. Kashyap, “Chirped fibre Bragg gratings for WDM applications,” in Digest of Optical Amplifiers and Their Applications (Optical Society of America, 1997), paper FAW12.
  7. M. Ibsen, M. K. Durkin, K. Ennser, M. J. Cole, and R. I. Laming, “Long continuously chirped fiber Bragg gratings for compensation of linearand 3rd order dispersion,” in Proceedings of the European Conference on Optical Communications (1997), pp. 49-52.
  8. L. D. Garrett, A. H. Gnauck, F. Forghieri, V. Gusmeroli, and D. Scarano, “16-10 Gb/s WDM transmission over 840 km SMF using eleven broadband chirped fiber gratings,” IEEE Photon. Technol. Lett. 11, 484-486 (1999). [CrossRef]
  9. X. Shu, K. Sugden, P. Rhead, J. Mitchell, I. Felmeri, G. Lloyd, K. Byron, Z. Huang, I. Khrushchev, and I. Bennion, “Tunable dispersion compensator based on distributed Gires-Tournois etalons,” IEEE Photon. Technol. Lett. 15, 1111-1113(2003). [CrossRef]
  10. D. J. Moss, M. Lamont, S. McLaugthlin, G. Randall, P. Colbourne, S. Kiran, and C. A. Hulse, “Tunable dispersion and dispersion slope compensators for 10 Gb/s using all-pass multicavity etalons,” IEEE Photon. Technol. Lett. 15, 730-732(2003). [CrossRef]
  11. J. A. R. Williams, L. A. Everall, I. Bennion, and N. J. Doran, “Fiber Bragg grating fabrication for dispersion slope compensation,” IEEE Photon. Technol. Lett. 8, 1187-1189(1996). [CrossRef]
  12. B. J. Eggleton, P. A. Krug, L. Poladian, and F. Ouellette, “Long superstructure Bragg gratings in optical fibers,” Electron. Lett. 30, 1620-1622 (1994). [CrossRef]
  13. F. Ouellette, P. A. Krug, T. Stephens, G. Dhosi, and B. J. Eggleton, “Broadband and WDM dispersion compensation using chirped sampled fiber Bragg gratings,” Electron. Lett. 31, 899-901, (1995). [CrossRef]
  14. A. Othonos, X. Lee, and R. M. Measures, “Superimposed multiple Bragg gratings,” Electron. Lett. 30, 1972-1974 (1994). [CrossRef]
  15. M. Durkin, M. Ibsen, M. J. Cole, and R. I. Laming, “1 m long continuously-written fibre Bragg gratings for combined second- and third-order dispersion compensation,” Electron. Lett. 33, 1891-1893 (1997). [CrossRef]
  16. Y. Dai, X. Chen, J. Sun, and S. Xie, “Wideband multichannel dispersion compensation based on a strongly chirped sampled Bragg grating and phase shifts,” Opt. Lett. 31, 311-313(2006). [CrossRef] [PubMed]
  17. M. Kohmoto, B. Sutherland, and K. Iguchi, “Localization in optics: quasi-periodic media,” Phys. Rev. Lett. 58, 2436-2438(1987). [CrossRef] [PubMed]
  18. C. Sibilia, P. Masciulli, and M. Bertolotti, “Optical properties of quasi-periodic (self-similar) structures,” Pure Appl. Opt. 7, 383-391 (1998). [CrossRef]
  19. W. Gellermann, M. Kohmoto, B. Sutherland, and P. C. Taylor, “Localization of light waves in Fibonacci dielectric multilayers,” Phys. Rev. Lett. 72, 633-636 (1994). [CrossRef] [PubMed]
  20. D. Lusk, I. Abdulhalim, and F. Placido, “Omnidirectional reflection from Fibonacci quasi-periodic one-dimensional photonic crystal,” Opt. Commun. 198, 273-279 (2001). [CrossRef]
  21. R. W. Peng, M. Mazzer, X. Q. Huang, F. Qiu, M. Wang, A. Hu, and S. S. Jian, “Symmetry-induced perfect transmission of light waves in quasi-periodic dielectric multilayers,” Appl. Phys. Lett. 80, 3063-3065 (2002). [CrossRef]
  22. E. Macia, “Optical engineering with Fibonacci dielectric multilayers,” Appl. Phys. Lett. 73, 3330-3332 (1998). [CrossRef]
  23. E. Macia, “Exploiting quasi-periodic order in the design of optical devices,” Phys. Rev. B 63, 205421 (2001). [CrossRef]
  24. E. Macia, “Optical applications of Fibonacci dielectric multilayers,” Ferroelectrics 250, 401-404 (2001). [CrossRef]
  25. X. Yang, Y. Liu, and X. Fu, “Transmission properties of light through the Fibonacci-class multilayers,” Phys. Rev. B 59, 4546-4548 (1999). [CrossRef]
  26. X. Q. Huang, S. S. Jiang, R. W. Peng, and A. Hu, “Perfect transmission and self-similar optical transmission spectra in symmetric Fibonacci-class multilayers,” Phys. Rev. E 59, 245104 (2001).
  27. S. Golmohammadi, M. K. Moravvej-Farshi, A. Rostami, and A. Zarifkar, “Narrowband DWDM filters based on Fibonacci-class quasi-periodic structures,” Opt. Express 15, 10520-10532, (2007). [CrossRef] [PubMed]
  28. R. Germann, H. W. M. Salemnik, R. Beyeler, G. L. Bona, F. Horst, I. Massarek, and B. J. Offrein, “Silicon oxynitride layers for optical waveguide applications,” J. Electrochem. Soc. 147, 2237-2241 (2000). [CrossRef]
  29. H. A. Macleod, Thin Film Optical Filter, 2nd ed. (McGraw-Hill, 1989).
  30. P. K. Katti, K. Singh, and A. K. Kavathekar, “Effect of an apodizing screen on the rectangular and triangular wave response of a circular aperture with incoherent incident light,” Appl. Opt. 9, 129-134 (1970). [CrossRef] [PubMed]
  31. V. Agarwal and M. E Mora-Romes, “Optical characterization of polytype Fibonacci and Thue-Morse quasiregular dielectric structures made of porous silicon multilayers,” J. Phys. D 40, 3203-3211 (2007). [CrossRef]
  32. S. H. Kim, H. Hiroshima, and M. Komuro, “Photo-nanoimprint lithography combined with thermal treatment to improve resist pattern line-edge roughness,” Nanotechnology 17, 2219-2222 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited