OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: James C. Wyant
  • Vol. 47, Iss. 35 — Dec. 10, 2008
  • pp: 6497–6501

Enhanced magneto-optical effect in cobalt nanoparticle-doped optical fiber

Helmut C. Y. Yu, Martijn A. van Eijkelenborg, Sergio G. Leon-Saval, Alexander Argyros, and Geoff W. Barton  »View Author Affiliations


Applied Optics, Vol. 47, Issue 35, pp. 6497-6501 (2008)
http://dx.doi.org/10.1364/AO.47.006497


View Full Text Article

Enhanced HTML    Acrobat PDF (268 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

An enhanced magnetic Faraday effect is demonstrated in cobalt nanoparticle-doped polymer optical fiber. Magneto-optically induced rotation of the plane of polarization proportional to both the dopant particle concentration and the magnetic field strength is demonstrated. Potential applications include magnetic field sensors, current sensors, and in-fiber optical isolators.

© 2008 Optical Society of America

OCIS Codes
(060.2290) Fiber optics and optical communications : Fiber materials
(060.2370) Fiber optics and optical communications : Fiber optics sensors
(160.3820) Materials : Magneto-optical materials
(230.2240) Optical devices : Faraday effect
(350.4990) Other areas of optics : Particles
(060.4005) Fiber optics and optical communications : Microstructured fibers

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: August 15, 2008
Revised Manuscript: October 21, 2008
Manuscript Accepted: October 26, 2008
Published: December 3, 2008

Citation
Helmut C. Y. Yu, Martijn A. van Eijkelenborg, Sergio G. Leon-Saval, Alexander Argyros, and Geoff W. Barton, "Enhanced magneto-optical effect in cobalt nanoparticle-doped optical fiber," Appl. Opt. 47, 6497-6501 (2008)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-47-35-6497


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Hideur, T. Chartier, M. Brunel, M. Salhi, C. Özkul, and F. Sanchez, “Mode-lock, Q-switch and CW operation of an Yb-doped double-clad fiber ring laser,” Opt. Commun. 198, 141-146 (2001). [CrossRef]
  2. H. Lassing, W. J. Mastop, A. F. G. van der Meer, and A. A. M. Oomens, “Plasma current measurements by Faraday rotation in a single-mode fiber,” Appl. Opt. 26, 2456-2460 (1987). [CrossRef] [PubMed]
  3. E. H. Hwang and B. Y. Kim, “Pulsed high magnetic field sensor using polymethyl methacrylate,” Meas. Sci. Technol. 17, 2015-2021 (2006). [CrossRef]
  4. S. D. Jacobs, “Faraday rotation, optical isolation and modulation at 10.6 μm using hot-pressed CdCr2S4 and CoCr2S4,” J. Electron. Mater. 4, 223-241 (1975). [CrossRef]
  5. G. I. Chandler and F. C. Jahoda, “Current measurements by Faraday rotation in single-mode optical fibers,” Rev. Sci. Instrum. 56, 852-862 (1985). [CrossRef]
  6. C. Z. Tan and J. Arndt, “Faraday effect in silica glass,” Physica B 233, 1-7 (1997). [CrossRef]
  7. H. Harms, A. Papp, and K. Kempter, “Magneto-optical properties of index-gradient optical fibers,” Appl. Opt. 15, 799-801(1976). [CrossRef] [PubMed]
  8. A. M. Smith, “Polarization and magneto-optic properties of single-mode optical fiber,” Appl. Opt. 17, 52-56 (1978). [CrossRef] [PubMed]
  9. S. C. Rashleigh and R. Ulrich, “Magneto-optic current sensing with birefringent fibers,” Appl. Phys. Lett. 34 (11), 768-770(1979). [CrossRef]
  10. Y. Ruan, R. A. Jarvis, A. V. Rode, S. Madden, and B. Luther-Davies, “Wavelength dispersion of Verdet constants in chalcogenide glasses for magneto-optical waveguide devices,” Opt. Commun. 252, 39-45 (2005). [CrossRef]
  11. A. E. Turner, R. L. Gunshor, and S. Datta, “New class of materials for optical isolators,” Appl. Opt. 22, 3152-3154 (1983). [CrossRef] [PubMed]
  12. A. Horikawa, K. Yamaguchi, M. Inoue, T. Fujii, and K. I. Arai, “Magneto-optical effect of films with nano-clustered cobalt particles dispersed in PMMA plastics,” Mater. Sci. Eng. A 217, 348-352 (1996), see Fig. 6a. [CrossRef]
  13. H. C. Y. Yu, A. Argyros, G. Barton, M. A. van Eijkelenborg, C. Barbe, K. Finnie, L. Kong, F. Ladouceur, and S. McNiven, “Quantum dot and silica nanoparticle doped polymer optical fibers,” Opt. Express 15, 9989-9994 (2007). [CrossRef] [PubMed]
  14. J. Wouters, “Superparamagnetic nanoparticles for Faraday rotation,” http://www.kuleuven.be/inpac/presentations/Woueters_WP6_INPAC.pdf.
  15. V. K. Valev, J. Wouters, and T. Verbiest, “Precise measurements of Faraday rotation using ac magnetic fields,” Am. J. Phys. 76, 626-629 (2008). [CrossRef]
  16. M. A. van Eijkelenborg, M. C. J. Large, A. Argyros, J. Zagari, S. Manos, N. A. Issa, I. Bassett, S. Fleming, R. C. McPhedran, C. M. De Sterke, and N. A. P. Nicorovici, “Microstructured polymer optical fiber,” Opt. Express 9 (7), 319-327 (2001). [CrossRef] [PubMed]
  17. M. C. J. Large, L. Poladian, G. W. Barton, and M. A. van Eijkelenborg, Microstructured Polymer Optical Fibers (Springer Verlag, 2008). [CrossRef]
  18. N. A. Issa, “High numerical aperture in multimode microstructured optical fibers,” Appl. Opt. 43, 6191-6197 (2004). [CrossRef] [PubMed]
  19. R. Lwin, G. Barton, L. Harvey, J. Harvey, D. Hirst, S. Manos, M. C. J. Large, L. Poladian, A. Bachmann, H. Poisel, and K.-F. Klein, “Beyond the bandwidth-length product: graded index microstructured polymer optical fiber,” Appl. Phys. Lett. 91, 191119 (2007). [CrossRef]
  20. A. Jain, J. Kumar, F. Zhou, and L. Li, “A simple experiment for determining Verdet constants using alternating current magnetic fields,” Am. J. Phys. 67, 714-717 (1999). [CrossRef]
  21. J. D. Swalen, R. Santo, M. Tacke, and J. Fischer, “Properties of polymeric thin films by integrated optical techniques,” IBM J. Res. Dev. 21 (2), 168-175 (1977). [CrossRef]
  22. S. Kimura, T. Kato, T. Hyodo, Y. Shimizu, and M. Egashira, “Electromagnetic wave absorption properties of carbonyl iron-ferrite/PMMA composites fabricated by hybridization method,” J. Magn. Magn. Mater. 312, 181-186 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited