OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: James C. Wyant
  • Vol. 47, Iss. 35 — Dec. 10, 2008
  • pp: 6535–6542

Spectral measurements with superresolution based on periodic modulation of the spectrum

Naum K. Berger  »View Author Affiliations


Applied Optics, Vol. 47, Issue 35, pp. 6535-6542 (2008)
http://dx.doi.org/10.1364/AO.47.006535


View Full Text Article

Enhanced HTML    Acrobat PDF (820 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We extend the approach recently applied for achieving spatial and temporal superresolution to spectral measurements with superresolution. The light passes previously through a filter with a periodic spectral response. Owing to the spectral modulation, the parts of the spectrum Fourier transform are shifted and transmitted through the passband of the Fourier transform of the spectrometer instrumental function. Thus, all the parts of the spectrum Fourier transform are recorded by the spectrometer and then restored by a special procedure. An inverse Fourier transform gives the spectrum restored with superresolution. We numerically demonstrate more than tenfold enhancement of the resolution by using a sampled fiber Bragg grating for spectral modulation.

© 2008 Optical Society of America

OCIS Codes
(070.4790) Fourier optics and signal processing : Spectrum analysis
(300.6320) Spectroscopy : Spectroscopy, high-resolution
(070.2615) Fourier optics and signal processing : Frequency filtering
(060.3735) Fiber optics and optical communications : Fiber Bragg gratings

ToC Category:
Spectroscopy

History
Original Manuscript: June 25, 2008
Revised Manuscript: September 19, 2008
Manuscript Accepted: October 20, 2008
Published: December 3, 2008

Citation
Naum K. Berger, "Spectral measurements with superresolution based on periodic modulation of the spectrum," Appl. Opt. 47, 6535-6542 (2008)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-47-35-6535


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. Z. Zalevsky and D. Mendlovic, Optical Superresolution (Springer-Verlag, 2004).
  2. R. Heintzmann, T. M. Jovin, and C. Cremer, “Saturated patterned excitation microscopy--a concept for optical resolution improvement,” J. Opt. Soc. Am. A 19, 1599-1609 (2002). [CrossRef]
  3. M. G. L. Gustafsson, “Nonlinear structured-illumination microscopy: wide-field fluorescence imaging with theoretically unlimited resolution,” Proc. Natl. Acad. Sci. U.S.A. 102, 13081-13086 (2005). [CrossRef] [PubMed]
  4. N. K. Berger and B. Fischer, “Unified approach to short optical pulse recording and spatial imaging with subwavelength resolution,” Opt. Commun. 274, 50-58 (2007). [CrossRef]
  5. J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, 1996).
  6. E. L. Kosarev, “Shannon's superresolution limit for signal recovery,” Inverse Probl. 6, 55-76 (1990). [CrossRef]
  7. J. L. Harris, “Diffraction and resolving power,” J. Opt. Soc. Am. 54, 931-936 (1964). [CrossRef]
  8. C. K. Rushforth and R. W. Harris, “Restoration, resolution, and noise,” J. Opt. Soc. Am. 58, 539-545 (1968). [CrossRef]
  9. P. Bousquet, Spectroscopy and its Instrumentation (Hilger, 1971).
  10. P. A. Jansson, “Modern constrained nonlinear methods,” in Deconvolution of Images and Spectra, P. A. Jansson, ed. (Academic, 1997), pp. 107-172.
  11. A. Brablec, D. Trunec, and F. Šťastný, “Deconvolution of spectral line profiles: solution of the inversion problem,” J. Phys. D 32, 1870-1875 (1999). [CrossRef]
  12. S. Mijovic and M. Vuceljic, “Comparison between direct and inverse approaches in problems of recovering the true profile of a spectral line,” J. Quant. Spectrosc. Radiat. Transfer 77, 79-86 (2003). [CrossRef]
  13. G. M. Petrov, “A simple algorithm for spectral line deconvolution,” J. Quant. Spectrosc. Radiat. Transfer 72, 281-287 (2002). [CrossRef]
  14. L. Xu, H. Yang, K. Chen, Q. Tan, Q. He, and G. Jin, “Resolution enhancement by combination of subpixel and deconvolution in miniature spectrometers,” Appl. Opt. 46, 3210-3214 (2007). [CrossRef] [PubMed]
  15. A. S. Kaminskii, E. L. Kosarev, and E. V. Lavrov, “Using comb-like instrumental functions in high-resolution spectroscopy,” Meas. Sci. Technol. 8, 864-870 (1997). [CrossRef]
  16. B. J. Eggleton, P. A. Krug, L. Poladian, and F. Ouellette, “Long periodic superstructure Bragg gratings in optical fibres,” Electron. Lett. 30, 1620-1622 (1994). [CrossRef]
  17. S. Osawa, N. Wada, K. Kitayama, and W. Chujo, “Arbitrary-shaped optical pulse train synthesis using weight/phase-programmable 32-taped delay line waveguide filter,” Electron. Lett. 37, 1356-1357 (2001). [CrossRef]
  18. N. K. Berger, B. Levit, A. Bekker, and B. Fischer, “Compression of periodic optical pulses using temporal fractional Talbot effect,” IEEE Photon. Technol. Lett. 16, 1855-1857(2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited