OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: James C. Wyant
  • Vol. 47, Iss. 35 — Dec. 10, 2008
  • pp: 6580–6585

Pressure sensor with optofluidic configuration

Sergio Calixto, Francisco J. Sanchez-Marin, and Martha Rosete-Aguilar  »View Author Affiliations

Applied Optics, Vol. 47, Issue 35, pp. 6580-6585 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (573 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present a new kind of compact, simple, and low cost optical pressure sensor. The physical principle on which the sensor is based, components, layout of the system, and characterization are described. The range of pressures in which the sensor works is from about 0.5 to 3 psi ( 1   psi = 6.895 kPa ).

© 2008 Optical Society of America

OCIS Codes
(120.0120) Instrumentation, measurement, and metrology : Instrumentation, measurement, and metrology
(160.5470) Materials : Polymers
(350.3950) Other areas of optics : Micro-optics
(130.3990) Integrated optics : Micro-optical devices

ToC Category:
Instrumentation, Measurement, and Metrology

Original Manuscript: July 15, 2008
Revised Manuscript: October 15, 2008
Manuscript Accepted: November 6, 2008
Published: December 4, 2008

Sergio Calixto, Francisco J. Sanchez-Marin, and Martha Rosete-Aguilar, "Pressure sensor with optofluidic configuration," Appl. Opt. 47, 6580-6585 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. B. Meinel and M. P. Meinel, “Inflatable membrane mirrors for opical passband imagery,” Opt. Eng. 39, 541-550 (2000). [CrossRef]
  2. E. F. Borra, “The case for liquid mirrors in orbiting telescopes,” Astrophys. J. 373, 317-321 (1991). [CrossRef]
  3. E. F. Borra, “The case for a liquid mirror in a lunar-based telescope,” Astrophys. J. 392, 375-383 (1992). [CrossRef]
  4. L. G. Commander, S. E. Day, and D. R. Selviah, “Variable focal length microlenses,” Opt. Commun. 177, 157-170 (2000). [CrossRef]
  5. S. Kuiper and B. H. W. Hendriks, “Variable-focus liquid lens for miniature cameras,” Appl. Phys. Lett. 85, 1128-1130(2004). [CrossRef]
  6. www.varioptic.com. The site describes a liquid lens based on the electrowetting phenomenon.
  7. A. N. Simonov, O. Akhzar-Mehr, and G. Vdovin, “Light scanner based on a viscoelastic stretchable grating,” Opt. Lett. 30, 949-951 (2005). [CrossRef] [PubMed]
  8. H. Yu, G. Zhou, S. F. Cau, and F. Lee, “Optofluidic variable aperture,” Opt. Lett. 33, 548-550 (2008). [CrossRef]
  9. J. Xu, X. Wang, K. L. Cooper, and A. Wang, “Miniature all-silica fiber optic pressure and acoustic sensors,” Opt. Lett. 30, 3269-3271 (2005). [CrossRef]
  10. X. Wang, J. Xu, Y. Zhu, K. L. Cooper, and A. Wang, “All fused-silica miniature optical fiber tip pressure sensor,” Opt. Lett. 31, 885-887 (2006). [CrossRef] [PubMed]
  11. K. Hosokawa, K. Hanada, and R. Maeda, “A polydimethylsiloxane deformable diffraction grating for monitoring of local pressure in microfluidic devices,” J. Micromech. Microeng. 12, 1-6 (2002). [CrossRef]
  12. www.fiso.com, FISO Technologies Inc., 500 St. Jean Baptiste Ave., Quebec, Canada.
  13. V. Zamora, A. Diez, M. V. Andres, and B. Gimeno, “Refractometric sensor based on whispering-gallery modes of thin capillaries,” Opt. Express 15, 12011-12015 (2007). [CrossRef] [PubMed]
  14. P. Domachuk, I. C. M. Littler, M. Cronin-Golomb, and B. J. Eggleton, “Compact resonant integrated microfluidic refractometer,” Appl. Phys. Lett. 88, 093513 (2006). [CrossRef]
  15. S. Campopiano, R. Bernini, L. Zeni, and P. M. Sarro, “ Microfluidic sensor based on integral optical hollow waveguides,” Opt. Lett. 29, 1894-1896 (2004). [CrossRef] [PubMed]
  16. E. Chow, Q. Grot, L. W. Mirkqrimi, M. Sigalas, and G. Girolami, “Compact biochemical sensor built with two-dimensional photonic crystal microcavity,” Opt. Lett. 29, 1093-1095 (2004). [CrossRef] [PubMed]
  17. S. Calixto, M. Rosete-Aguilar, D. Monzon-Hernandez, and V. P. Minkovich, “Capillary refractometer integrated in a microfluidic configuration,” Appl. Opt. 47, 843-848 (2008). [CrossRef] [PubMed]
  18. T. L. Yeo, T. Sun, and K. T. V. Grattan, “Fibre optic sensor technologies for humidity and moisture measurement,” Sens. Actuators A 144, 280-295 (2008). [CrossRef]
  19. C. Monat, P. Domachuk, and B. J. Eggleton, “Integrated optofluidics: A new river of light,” Nat. Photonics 1, 106-114(2007). [CrossRef]
  20. J. Fraden, Handbook of Modern Sensors: Physics, Designs and Applications (Springer-Verlag, 1996).
  21. M. Born and E. Wolf, Principles of Optics (Pergamon, 1975).
  22. N. Sugiura and S. Morita,“Variable-focus liquid-filled optical lens,” Appl. Opt. 32, 4181-4186 (1993). [CrossRef] [PubMed]
  23. A. H. Rawicz and I. Mikhailenko, “Modeling a variable-focus liquid filled optical lens,” Appl. Opt. 35, 1587-1589(1996). [CrossRef] [PubMed]
  24. Silastic T-2, Dow Corning Corp., South Saginaw Road, Midland, Michigan 48686, USA.
  25. H. M. Smith, ed., Holographic Recording Materials (Springer-Verlag, 1977).
  26. D.Malacara, ed., Optical Shop Testing (Wiley, 1978), Chap. 11.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited