OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: James C. Wyant
  • Vol. 47, Iss. 35 — Dec. 10, 2008
  • pp: 6606–6614

Two-dimensional phase unwrapping to help characterize an electromagnetic beam for quasi-optical mode converter design

Michael P. Perkins and Ronald J. Vernon  »View Author Affiliations


Applied Optics, Vol. 47, Issue 35, pp. 6606-6614 (2008)
http://dx.doi.org/10.1364/AO.47.006606


View Full Text Article

Enhanced HTML    Acrobat PDF (916 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

An improved two-dimensional phase unwrapping procedure is discussed that uses a weighted least-squares algorithm, a congruence operation, and a filter to unwrap the phase distribution of an electromagnetic beam. These improvements make possible several advances for mirror designs used in gyrotron quasi-optical mode converters. The improved phase unwrapping procedure is demonstrated by applying it to a measured beam and a simulated beam that are used to design mirrors. The unwrapping procedure produces a smooth unwrapped phase that does not change the characteristics of the beam. The smooth unwrapped phase distribution is also used to find an estimate for the wavenumber vector distribution that is needed to design the mirrors.

© 2008 Optical Society of America

OCIS Codes
(230.4040) Optical devices : Mirrors
(100.5088) Image processing : Phase unwrapping

ToC Category:
Image Processing

History
Original Manuscript: June 3, 2008
Revised Manuscript: September 8, 2008
Manuscript Accepted: September 18, 2008
Published: December 5, 2008

Citation
Michael P. Perkins and Ronald J. Vernon, "Two-dimensional phase unwrapping to help characterize an electromagnetic beam for quasi-optical mode converter design," Appl. Opt. 47, 6606-6614 (2008)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-47-35-6606


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. P. Perkins and R. J. Vernon, “Mirror design for use in gyrotron quasi-optical mode converters,” IEEE Trans. Plasma Sci. 35, 1747-1757 (2007). [CrossRef]
  2. M. P. Perkins, R. Cao, J. M. Neilson, and R. J. Vernon, “A high efficiency launcher and mirror system for use in a 110 GHz TE22,6 mode gyrotron,” Int. J. Infrared Millim. Waves 28, 207-218 (2007). [CrossRef]
  3. M. P. Perkins, “The design of beam shaping mirrors for gyrotrons to aid injection of an electromagnetic beam into a corrugated waveguide,” Ph.D. dissertation (University of Wisconsin-Madison, 2004).
  4. B. Z. Katsenelenbaum and V. V. Semenov, “Synthesis of phase correctors shaping a specified field,” J. Radiotechnics Electron. 12, 223-231 (1967).
  5. J. M. Neilson, “Optimal synthesis of quasi-optical launchers for high-power gyrotrons,” IEEE Trans. Plasma Sci. 34, 635-641 (2006). [CrossRef]
  6. D. C. Ghiglia and M. D. Pritt, Two-Dimensional Phase Unwrapping Theory, Algorithms, and Software (Wiley, 1998).
  7. K. Itoh, “Analysis of the phase unwrapping algorithm,” Appl. Opt. 21, 2470 (1982). [CrossRef] [PubMed]
  8. D. C. Ghiglia, G. A. Mastin, and L. A. Romero, “Cellular-automata method for phase unwrapping,” J. Opt. Soc. Am. A 4, 267-280 (1987). [CrossRef]
  9. H. Takajo and T. Takahashi, “Least-squares phase estimation from the phase difference,” J. Opt. Soc. Am. A 5, 416-425(1988). [CrossRef]
  10. R. M. Goldstein, H. A. Zebker, and C. L. Werner, “Satellite radar interferometry--two-dimensional phase unwrapping,” Radio Sci. 23, 713-720 (1988). [CrossRef]
  11. D. J. Bone, “Fourier fringe analysis--the two-dimensional phase unwrapping problem,” Appl. Opt. 30, 3627-3632 (1991). [CrossRef] [PubMed]
  12. A. Baldi, “Two-dimensional phase unwrapping by quad-tree decomposition,” Appl. Opt. 40, 1187-1194(2001). [CrossRef]
  13. M. A. Herraez, D. R. Burton, M. J. Lalor, and M. A. Gdeisat, “Fast two-dimensional phase-unwrapping algorithm based on sorting by reliability following a noncontinuous path,” Appl. Opt. 41, 7437-7444 (2002). [CrossRef] [PubMed]
  14. J. M. Huntley, “Noise-immune phase unwrapping algorithm,” Appl. Opt. 28, 3268-3270 (1989). [CrossRef] [PubMed]
  15. J. A. Quiroga, A. Gonzalezcano, and E. Bernabeu, “Phase-unwrapping algorithm-based on an adaptive criterion,” Appl. Opt. 34, 2560-2563 (1995). [CrossRef] [PubMed]
  16. R. Cusack, J. M. Huntley, and H. T. Goldrein, “Improved noise-immune phase-unwrapping algorithm,” Appl. Opt. 34, 781-789 (1995). [CrossRef] [PubMed]
  17. J. R. Buckland, J. M. Huntley, and S. R. E. Turner, “Unwrapping noisy phase maps by use of a minimum-cost-matching algorithm,” Appl. Opt. 34, 5100-5108 (1995). [CrossRef] [PubMed]
  18. C. G. Quan, C. J. Tay, L. J. Chen, and Y. Fu, “Spatial-fringe-modulation-based quality map for phase unwrapping,” Appl. Opt. 42, 7060-7065 (2003). [CrossRef] [PubMed]
  19. W. Xu and I. Cumming, “A region-growing algorithm for InSAR phase unwrapping,” IEEE Trans. Geosci. Remote Sens. 37, 124-134 (1999). [CrossRef]
  20. Z. J. Wang and S. S. Li, “Phase unwrapping through a branch-cut-based cut-bridging and window-patching method,” Appl. Opt. 38, 805-814 (1999). [CrossRef]
  21. J. A. Quiroga and E. Bernabeu, “Phase-unwrapping algorithm for noisy phase-map processing,” Appl. Opt. 33, 6725-6731(1994). [CrossRef] [PubMed]
  22. N. Hubig, S. Suchandt, and N. Adam, “Equivalence of cost generators for minimum cost flow phase unwrapping,” J. Opt. Soc. Am. A 19, 64-70 (2002). [CrossRef]
  23. T. J. Flynn, “Two-dimensional phase unwrapping with minimum weighted discontinuity,” J. Opt. Soc. Am. A 14, 2692-2701 (1997). [CrossRef]
  24. M. A. Herraez, D. R. Burton, M. J. Lalor, and D. B. Clegg, “Robust, simple and fast algorithm for phase unwrapping,” Appl. Opt. 35, 5847-5852 (1996). [CrossRef] [PubMed]
  25. B. Friedlander and J. M. Francos, “Model based phase unwrapping of 2-D signals,” IEEE Trans. Signal Process. 44, 2999-3007 (1996). [CrossRef]
  26. J. Strand and T. Taxt, “Two-dimensional phase unwrapping using robust derivative estimation and adaptive integration,” IEEE Trans. Image Process. 11, 1192-1200 (2002). [CrossRef]
  27. P. G. Charette and I. W. Hunter, “Robust phase-unwrapping method for phase images with high noise content,” Appl. Opt. 35, 3506-3513 (1996). [CrossRef] [PubMed]
  28. K. M. Hung and T. Yamada, “Phase unwrapping by regions using least-squares approach,” Opt. Eng. 37, 2965-2970(1998). [CrossRef]
  29. Q. Lin, J. F. Vesecky, and H. A. Zebker, “New approaches in interferometric SAR data processing,” IEEE Trans. Geosci. Remote Sens. 30, 560-567 (1992). [CrossRef]
  30. J. Strand, T. Taxt, and A. K. Jain, “Two-dimensional phase unwrapping using a block least-squares method,” IEEE Trans. Image Process. 8, 375-386 (1999). [CrossRef]
  31. D. C. Ghiglia and L. A. Romero, “Robust two-dimensional weighted and unweighted phase unwrapping that uses fast transforms and iterative methods,” J. Opt. Soc. Am. A 11, 107-117 (1994). [CrossRef]
  32. D. C. Ghiglia and L. A. Romero, “Minimum L(p)-norm two-dimensional phase unwrapping,” J. Opt. Soc. Am. A 13, 1999-2013 (1996). [CrossRef]
  33. M. D. Pritt, “Phase unwrapping by means of multigrid techniques for interferometric SAR,” IEEE Trans. Geosci. Remote Sens. 34, 728-738 (1996). [CrossRef]
  34. S. M. H. Song, S. Napel, N. J. Pelc, and G. H. Glover, “Phase unwrapping of MR phase images using Poisson equation,” IEEE Trans. Image Process. 4, 667-676 (1995). [CrossRef]
  35. M. D. Pritt and J. S. Shipman, “Least-squares two-dimensional phase unwrapping using FFTs,” IEEE Trans. Geosci. Remote Sens. 32, 706-708 (1994). [CrossRef]
  36. H. A. Zebker and Y. P. Lu, “Phase unwrapping algorithms for radar interferometry: residue-cut, least-squares, and synthesis algorithms,” J. Opt. Soc. Am. A 15, 586-598 (1998). [CrossRef]
  37. S. Stramaglia, L. Guerriero, G. Pasquariello, and N. Veneziani, “Mean-field annealing for phase unwrapping,” Appl. Opt. 38, 1377-1383 (1999). [CrossRef]
  38. O. Marklund, “Noise-insensitive two-dimensional phase unwrapping method,” J. Opt. Soc. Am. A 15, 42-60 (1998). [CrossRef]
  39. J. L. Marroquin and M. Rivera, “Quadratic regularization functionals for phase unwrapping,” J. Opt. Soc. Am. A 12, 2393-2400 (1995). [CrossRef]
  40. D. L. Fried, “Least-square fitting a wavefront distortion estimate to an array of phase-difference measurements,” J. Opt. Soc. Am. 67, 370-375 (1977). [CrossRef]
  41. R. H. Hudgin, “Wavefront reconstruction for compensated imaging,” J. Opt. Soc. Am. 67, N375-378 (1977). [CrossRef]
  42. R. Seara, A. A. Goncalves, and P. B. Uliana, “Filtering algorithm for noise reduction in phase-map images with 2π phase jumps,” Appl. Opt. 37, 2046-2050 (1998). [CrossRef]
  43. H. Kogelnik, “Coupling and conversion coefficients for optical modes,” in Symposium on Quasi-Optics (Polytechnic Institute of Brooklyn, 1964), pp. 333-347.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited