OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: James C. Wyant
  • Vol. 47, Iss. 35 — Dec. 10, 2008
  • pp: 6615–6624

Optimized fiber optic bioprobe with high spectral contrast exploiting laser-induced fluorescence for malignancy diagnosis

Sunil K. Khijwania, C. K. Kim, Jagdish P. Singh, and Shane C. Burgess  »View Author Affiliations

Applied Optics, Vol. 47, Issue 35, pp. 6615-6624 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (882 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A high spectral contrast is expected to be very important when laser-induced fluorescence (LIF) is employed for cancer diagnosis. We developed a LIF optical fiber sensor to achieve a very high spectral contrast between normal and malignant tissues. A comprehensive experimental investigation was carried out to study the role of two critically important parameters for sensor design, namely, the excitation–collection geometry and the excitation wavelength, and their effect on the autofluorescence spectral contrast. An optimum sensing configuration was determined in order to enhance the small, but consistent, spectral difference between the normal and the malignant tissue for improving the accuracy of LIF-based cancer diagnosis. With the optimum sensor configuration, we realized a spectral contrast of more than 22 times between normal and malignant tissue sample spectra.

© 2008 Optical Society of America

OCIS Codes
(060.2310) Fiber optics and optical communications : Fiber optics
(060.2370) Fiber optics and optical communications : Fiber optics sensors
(300.2530) Spectroscopy : Fluorescence, laser-induced

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: September 12, 2008
Manuscript Accepted: October 13, 2008
Published: December 5, 2008

Virtual Issues
Vol. 4, Iss. 2 Virtual Journal for Biomedical Optics

Sunil K. Khijwania, C. K. Kim, Jagdish P. Singh, and Shane C. Burgess, "Optimized fiber optic bioprobe with high spectral contrast exploiting laser-induced fluorescence for malignancy diagnosis," Appl. Opt. 47, 6615-6624 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. G. G. Stokes, “Uber die andung der Brechbarkeit des Lichtes,” Philos. Trans. R. Soc. London 107, 11-16 (1852).
  2. H. Stübel, “Die Fluoreszenz tierischer Gewebe im ultravioletten Licht,” Pfluegers Arch. Gesamte Physiol. Menschen Tiere 142, 1-9 (1911).
  3. Y. Yang, Y. Ye, F. Li, Y. Li, and P. Ma, “Characteristic autofluorescence for cancer diagnosis and its origin,” Lasers Surg. Med. 7, 528-532 (1987). [CrossRef]
  4. E. Profio and D. R. Doiron, “A feasibility study of the use of fluorescence bronchoscopy for the localization of small lung tumors,” Phys. Med. Biol. 22, 949-957 (1977). [CrossRef]
  5. R. R. Alfano, A. Pradhan, G. C. Tang, and S. J. Wahl, “Optical spectroscopic diagnosis of cancer and normal breast tissues,” J. Opt. Soc. Am. B 6, 1015-1023 (1989). [CrossRef]
  6. K. T. Schomacker, J. K. Frisoli, C. C. Compton, T. J. Flotte, J. M. Richter, N. S. Nishioka, and T. F. Deutsch, “Ultraviolet laser-induced fluorescence of colonic tissue--basic technology and diagnostic potential,” Lasers Surg. Med. 12, 63-78(1992). [CrossRef]
  7. Y. Yang, G. C. Tang, M. Bessler, and R. R. Alfano, “Fluorescence spectroscopy as a photonic pathology method for detecting colon cancer,” Lasers Life Sci. 6, 259-276 (1995).
  8. S. G. Demos, M. Staggs, R. G. Edwards, R. Ramasmooj, and R. White, “Tissue imaging for cancer detection using NIR autofluorescence,” Proc. SPIE 4613, 31-34 (2002).
  9. W. Zheng, L. Weber, C. Cheng, K. C. Soo, and M. Olivo, “Optical excitation-emission wavelengths for autofluorescence diagnosis of bladder tumors,” Int. J.Cancer 104, 477-481 (2003).
  10. A. A. Oraesvsky, S. L. Jacques, G. H. Pettit, R. A. Sauerbrey, F. K. Tittel, J. H. Nguy, and P. D. Henry, “XeCl laser-induced fluorescence of atherosclerotic arteries: spectral similarities between lipid-rich lesions and peroxidized lipoproteins,” Circ. Res. 72, 84-90 (1993).
  11. A. J. Morguet, R. E. Gabriel, A. B. Buchwald, G. S. Werner, R. Nyga, and H. Kreuzer, “ Single-laser approach for fluorescence guidance of excimer laser angioplasty at 308 nm: evaluation in-vitro and during coronary angioplasty,” Lasers Surg. Med. 20, 382-393 (1997). [CrossRef]
  12. S. Gupta, V. L. N. S. Raja, A. Pradhan, “simultaneous extraction of optical transport parameters and intrinsic fluorescence of tissue mimicking model media using a spatially resolved fluorescence technique,” Appl. Opt. 45, 7529-7537 (2006). [CrossRef]
  13. Z. Huang, W. Zheng, S. Xie, R. Chen, H. Zeng, D. I. Mclean, and H. Lui, “Laser-induced autofluorescence microscopy of normal and tumor human colonic tissue,” Int. J. Oncol. 24, 59-63(2004).
  14. V. Nadeau, K. Hamdan, J. Hewett, J. Makaryceva, I. Tait, A. Cushieri, and M. Padgett, “A compact fluorescence spectroscopic tool for cancer detection,” Proc. SPIE 4613, 35-38(2002).
  15. D. L. Heintzelman, U. Utzinger, H. Fuchs, A. Zuluaga, K. Gossage, A. M. Gillenwater, R. Jacob, B. Kemp, and R. R. Richards-Kortum, “Optimal excitation wavelengths for in vivo detection of oral neoplasia using fluorescence spectroscopy,” Photochem. Photobiol. 72, 103-113 (2000). [CrossRef]
  16. S. Avrillier, E. Tinet, D. Ettori, J. M. Tualle, and B. Gelebart, “Influence of the emission-reception geometry in laser-induced fluorescence spectra from turbid medium,” Appl. Opt. 37, 2781-2787 (1998). [CrossRef]
  17. A. Gillenwater, R. Jacob, and R. Richards-Kortum, “Fluorescence spectroscopy: a technique with potential to improve the early detection of aerodigestive tract neoplasia,” Head Neck 20, 556-562 (1998).
  18. R. E. N. Shehada, V. Z. Marmarelis, H. N. Mansour, and W. S. Grundfest, “ Laser induced fluorescence attenuation spectroscopy: detection of hypoxia,” IEEE Trans. Biomed. Eng. 47, 301-312 (2000). [CrossRef]
  19. J. Keirsse, C. B. Pledel, O. Loreal, O. Sire, B. Bureau, P. Leroyer, B. Turlin, and J. Lucas, “IR optical fiber sensor for biomedical applications,” Vib. Spectrosc. 32, 23-32(2003).
  20. N. Ramanujam, “Fluorescence spectroscopy in vivo,” in Encyclopedia of Analytical Chemistry, R. A. Meyers, ed. (Wiley, 2000), pp. 20-56.
  21. N. Ramanujam, “Fluorescence spectroscopy of neoplastic and non-neoplastic tissue,” Neoplasia 2, 1-29 (2000).
  22. J. M. I. Maarek and S. Kim, “Multispectral excitation of time-resolved fluorescence of biological compounds: variation of fluorescence lifetime with excitation and emission wavelength,” SPIE Proc. 4252, 124-127 (2001).
  23. R. R. Alfano and A. Katz, “Noninvasive fluorescence-based instrumentation for cancer and precancer detection and screening,” Proc. SPIE 3913, 223-226 (2000).
  24. G. D. Fasman, ed., Handbook of Biochemistry and Molecular Biology, 3rd ed. (CRC Press, 1975).
  25. R. M. Berne and M. N. Levy, eds., Physiology (Mosby Year Book, 1993).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited