OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: James C. Wyant
  • Vol. 47, Iss. 35 — Dec. 10, 2008
  • pp: 6666–6674

Integrated diffractive shearing interferometry for adaptive wavefront sensing

Jason H. Karp, Trevor K. Chan, and Joseph E. Ford  »View Author Affiliations


Applied Optics, Vol. 47, Issue 35, pp. 6666-6674 (2008)
http://dx.doi.org/10.1364/AO.47.006666


View Full Text Article

Enhanced HTML    Acrobat PDF (941 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present theory, design, and preliminary experimental studies for a compact wavefront sensor based on lateral shearing interferometry using a binary phase grating, image sensor, and Fourier-based processing. The integrated system places a diffractive element directly onto an image sensor to generate interference fringes within overlapping diffraction orders. The shearing ratio and the interferogram signal-to-noise ratio directly affect the reconstruction accuracy of wavefronts with differing spatial variations. Optimal shearing parameters associated with the autocorrelation of the input encourage placing a spatial light modulator as the diffractive element allowing adaptive wavefront sensing. Experimental results from a fixed-grating system are presented as well as requirements for next-generation adaptive systems.

© 2008 Optical Society of America

OCIS Codes
(130.3120) Integrated optics : Integrated optics devices
(110.3175) Imaging systems : Interferometric imaging
(070.6120) Fourier optics and signal processing : Spatial light modulators

ToC Category:
Integrated Optics

History
Original Manuscript: July 3, 2008
Revised Manuscript: October 1, 2008
Manuscript Accepted: November 4, 2008
Published: December 8, 2008

Citation
Jason H. Karp, Trevor K. Chan, and Joseph E. Ford, "Integrated diffractive shearing interferometry for adaptive wavefront sensing," Appl. Opt. 47, 6666-6674 (2008)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-47-35-6666


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. K. Kinnstaetter, A. W. Lohmann, J. Schwider, and N. Streibl, “Accuracy of phase shifting interferometry,” Appl. Opt. 27, 5082-5089 (1988). [CrossRef] [PubMed]
  2. J. Primot, “Theoretical description of Shack-Hartmann wave-front sensor,” Opt. Commun. 222, 81-92 (2003). [CrossRef]
  3. P. S. Fairman, B. K. Ward, B. F. Oreb, D. I. Farrant, Y. Gilliand, C. H. Freund, A. J. Leistner, J. A. Seckold, and C. J. Walsh, “300-mm-aperture phase-shifting Fizeau interferometer,” Opt. Eng. 38, 1371-1380 (1999). [CrossRef]
  4. V. Ronchi, “Forty years of history of a grating interferometer,” Appl. Opt. 3, 437-451 (1964). [CrossRef]
  5. P. Hariharan, Optical Interferometry, 2nd ed. (Academic, 2003).
  6. G. Paez, M. Strojnik, and G. Torales, “Vectorial shearing interferometer,” Appl. Opt. 39, 5172-5178 (2000). [CrossRef]
  7. J. C. Wyant, “Double frequency grating lateral shear interferometer,” Appl. Opt. 12, 2057-2060 (1973). [CrossRef] [PubMed]
  8. S. Velghe, J. Primot, N. Guerineau, M. Cohen, and B. Wattellier, “Wave-front reconstruction from multidirectional phase derivatives generated by multilateral shearing interferometers,” Opt. Lett. 30, 245-247 (2005). [CrossRef] [PubMed]
  9. M. Takeda, H. Ina, and S. Kobayashi, “Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry,” J. Opt. Soc. Am. 72, 156-160(1982). [CrossRef]
  10. S. De. Nicola and P. Ferraro, “Fourier transform method of fringe analysis for moiré interferometry,” J. Opt. A 2, 228-233(2000). [CrossRef]
  11. D. Bone, “Fourier fringe analysis: the two-dimensional phase unwrapping problem,” Appl. Opt. 30, 3627-3632 (1991). [CrossRef] [PubMed]
  12. D. Fried, “Least-square fitting a wave-front distortion estimate to an array of phase-difference measurements,” J. Opt. Soc. Am. 67, 370-375 (1977). [CrossRef]
  13. R. Hudgin, “Wave-front reconstruction for compensated imaging,” J. Opt. Soc. Am. 67, 375-378 (1977). [CrossRef]
  14. K. Freichlad and C. Koliopoulos, “Modal estimation of a wave front from difference measurements using the discrete Fourier transform,” J. Opt. Soc. Am. 3, 1852-1861 (1986). [CrossRef]
  15. L. Poyneer, D. T. Gavel, and J. M. Brase, “Fast wave-front reconstruction in large adaptive optics systems with use of the Fourier transform,” J. Opt. Soc. Am. A 19, 2100-2111 (2002). [CrossRef]
  16. C. Elster and I. Weingartner, “Solution to the shearing problem,” Appl. Opt. 38, 5024-5031 (1999). [CrossRef]
  17. C. Elster and I. Weingartner, “Exact wave-front reconstruction from two lateral shearing interferograms,” J. Opt. Soc. Am. A 16, 2281-2285 (1999). [CrossRef]
  18. J. Goodman, Introduction to Fourier Optics, 3rd ed. (Roberts & Company, 2005).
  19. P. Liang, J. Ding, Z. Jin, C. Guo, and H. Wang, “Two-dimensional wave-front reconstruction from lateral shearing interferograms,” Opt. Express 14, 625-634 (2006). [CrossRef] [PubMed]
  20. M. P. Rimmer and J. C. Wyant, “Evaluation of large aberrations using a lateral-shear interferometer having variable shear,” Appl. Opt. 14, 142-150 (1975). [PubMed]
  21. A. Lohmann and O. Bryngdahl, “A lateral wavefront shearing interferometer with variable shear,” Appl. Opt. 6, 1934-1937(1967). [CrossRef] [PubMed]
  22. S. Yokozeki and T. Suzuki, “Shearing interferometer using the grating as the beam splitter,” Appl. Opt. 10, 1575-1580 (1971). [CrossRef] [PubMed]
  23. Y. Bitou, “Digital phase-shifting interferometer with an electrically addressed liquid-crystal spatial light modulator,” Opt. Lett. 28, 1576-1578 (2003). [CrossRef] [PubMed]
  24. S. Zhao and P. S. Chung, “Digital speckle shearing interferometer using a liquid-crystal spatial light modulator,” Opt. Eng. 45, 105606 (2006). [CrossRef]
  25. A. Hermerschnidt, S. Krüger, and G. Wernicke, “Binary diffractive beam splitters with arbitrary diffraction angles,” Opt. Lett. 32, 448-450 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited