OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: James C. Wyant
  • Vol. 47, Iss. 36 — Dec. 20, 2008
  • pp: 6680–6691

Unconditionally stable indole-derived glass blends having very high photorefractive gain: the role of intermolecular interactions

Rocco Angelone, Francesco Ciardelli, Arturo Colligiani, Francesco Greco, Paolo Masi, Annalisa Romano, Giacomo Ruggeri, and Jean-Louis Stehlé  »View Author Affiliations


Applied Optics, Vol. 47, Issue 36, pp. 6680-6691 (2008)
http://dx.doi.org/10.1364/AO.47.006680


View Full Text Article

Enhanced HTML    Acrobat PDF (582 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The photorefractivity of an indole derivative and of its polymer blends has been studied at room temperature. The indole derivative 3-[2-(4-nitrophenyl)ethenyl]-1-(2-ethylhexyl)-2-methylindole (NPEMI-E) is a typical low-molecular-weight glass-forming molecule having peculiar nonlinear optics characteristics. It is unconditionally soluble in the photoconductive poly-(N-vinyl-2,3-dimethylindole) so that all the possible blends can be studied for a weight percent (wt. %) content of NPEMI-E ranging from zero to 100. A very high and sharp maximum of the photorefractive optical gain Γ 2 2000 cm 1 was obtained for a NPEMI-E wt. % content of about 90. On the basis of recently published theoretical calculations, we have made the hypothesis that the rapid change of Γ 2 can also be ascribed to a correspondingly quick variation of the molecular electro-optic parameters of the dissolved chromophore for some well distinguished values of its concentration in the polymer matrix. Differential scanning calorimetry measurements were made and the results carefully analyzed with the aim of obtaining information on the intermolecular interactions. These last measurements also allowed rationalizing the unconditionally stable glass appearance of the obtained blends. Measurements of spectroscopic ellipsometry were also made on blends with different NPEMI-E content.

© 2008 Optical Society of America

OCIS Codes
(160.4330) Materials : Nonlinear optical materials
(160.5140) Materials : Photoconductive materials
(160.5320) Materials : Photorefractive materials
(190.3270) Nonlinear optics : Kerr effect
(190.5330) Nonlinear optics : Photorefractive optics
(230.4480) Optical devices : Optical amplifiers

ToC Category:
Materials

History
Original Manuscript: July 15, 2008
Revised Manuscript: September 4, 2008
Manuscript Accepted: November 4, 2008
Published: December 11, 2008

Citation
Rocco Angelone, Francesco Ciardelli, Arturo Colligiani, Francesco Greco, Paolo Masi, Annalisa Romano, Giacomo Ruggeri, and Jean-Louis Stehlé, "Unconditionally stable indole-derived glass blends having very high photorefractive gain: the role of intermolecular interactions," Appl. Opt. 47, 6680-6691 (2008)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-47-36-6680


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Colligiani, F. Brustolin, V. Castelvetro, F. Ciardelli, and G. Ruggeri, “Poly(1-vinylindole) and some of its methyl derivatives as substrates for photorefractive materials: their synthesis, optical and electrical characterization,” Proc. SPIE 4104, 71-77 (2000).
  2. F. Brustolin, V. Castelvetro, F. Ciardelli, G. Ruggeri, and A. Colligiani, “Synthesis and characterization of different poly(1-vinylindole)s for photorefractive materials,” J. Polym. Sci. A Polym. Chem. 39, 253-262 (2001).
  3. C. Castè, V. Castelvetro, F. Ciardelli, A. Colligiani, A. Mazzotta, D. Michelotti, G. Ruggeri, and C. A. Veracini, “Photoconductive films of poly-N-vinylindole-based blends for high-voltage photorefractive electrooptic cells,” Synth. Met. 138, 341-345 (2003). [CrossRef]
  4. R. Angelone, C. Castè, V. Castelvetro, F. Ciardelli, A. Colligiani, F. Greco, A. Mazzotta, and G. Ruggeri, “Synthesis and electro-optical characterization of polysiloxanes containing indolyl groups acting as photoconductive substrates for photorefractive materials,” e-polymers 075, 1-15 (2004).
  5. K. Meerholz, R. Bittner, Y. De Nardin, C. Bräuchle, E. Hendrickx, B. L. Volodin, B. Kippelen, and N. Peyghambarian, “Stability improvement of high-performance photorefractive polymers containing eutectic mixtures of electro-optic chromophores,” Adv. Mater. 9, 1043-1046 (1997). [CrossRef]
  6. R. Bittner, C. Bräuchle, and K. Meerholz, “Influence of the glass-transition temperature and the chromophore content on the grating buildup dynamics of poly(N-vinylcarbazole)-based photorefractive polymers,” Appl. Opt. 37, 2843-2851 (1998). [CrossRef]
  7. R. Bittner, T. K. Däubler, D. Neher, and K. Meerholz, “Influence of glass-transition temperature and chromophore content on the steady-state performance of poly(N-vinylcarbazole)-based photorefractive polymers,” Adv. Mater. 11, 123-127 (1999). [CrossRef]
  8. O. Ostroverkhova and W. E. Moerner, “Organic photorefractives: mechanisms, materials, and applications,” Chem. Rev. 104, 3267-3314 (2004). [CrossRef]
  9. M. Angiuli, F. Ciardelli, A. Colligiani, F. Greco, A. Romano, G. Ruggeri, and E. Tombari, “Photorefractivity of poly-N-vinylindole-based materials as compared with that of poly-N-vinylcarbazole-based blends,” Appl. Opt. 45, 7928-7937(2006). [CrossRef]
  10. D. W. Van Krevelen, Properties of Polymers (Elsevier, 1997).
  11. W. E. Moerner, S. M. Silence, F. Hache, and G. C. Bjorklund, “Orientationally enhanced photorefractive effect in polymers,” J. Opt. Soc. Am. B 11, 320-330 (1994). [CrossRef]
  12. D. J. Binks, K. Khand, and D. P. West, “Reorientation of chromophores in dispersive photorefractive polymers,” J. Opt. Soc. Am. B 18, 308-312 (2001). [CrossRef]
  13. W. E. Moerner and S. Silence, “Polymeric photorefractive materials,” Chem. Rev. 94, 127-155 (1994). [CrossRef]
  14. R. Angelone, M. Angiuli, F. Ciardelli, A. Colligiani, F. Greco, A. Romano, G. Ruggeri, and E. Tombari, “An indole-based low molecular weight glass-former giving materials with high cooperative photorefractive optical gain,” Proc. SPIE 6192, 61922M (2006).
  15. U. Landman, A. Ledwith, D. G. Marsh, and D. G. Williams, “Structural variations and multiple charge transfer transitions between chloranil and carbazole derivatives,” Macromolecules 9, 833-839 (1976). [CrossRef]
  16. R. Foster, Organic Charge Transfer Complexes (Academic, 1969).
  17. M. Gordon and J. S. Taylor, “Ideal copolymers and the second-order transitions of synthetic rubbers. I. NoN-crystalline copolymers,” J. Appl. Chem. 2, 493-500 (1952).
  18. P. R. Couchman and P. E. Karasz, “A classical thermodynamic discussion of the effect of composition on glass-transition temperatures,” Macromolecules 11, 117-119 (1978). [CrossRef]
  19. P. R. Couchman, “Compositional variation of glass-transition temperatures. 2. Application of the thermodynamic theory to compatible polymer blends,” Macromolecules 11, 1156-1161(1978). [CrossRef]
  20. P. R. Couchman, “Interaction Strength, nonrandom mixing, and the compositional variation of glass transition temperatures,” Macromolecules 24, 5772-5774 (1991). [CrossRef]
  21. M. J. Brekner, H. A. Schneider, and H. J. Cantow, “Approach to the composition dependence of the glass transition temperature of compatible polymer blends: 1,” Polymer 29, 78-85(1988). [CrossRef]
  22. H. A. Schneider, “Glass transition behaviour of compatible polymer blends,” Polymer 30, 771-779 (1989). [CrossRef]
  23. X. Lu and R. A. Weiss, “Relationship between the glass transition temperature and the interaction parameter of miscibly binary polymer blends,” Macromolecules 25, 3242-3246 (1992). [CrossRef]
  24. M. C. Righetti, G. Ajroldi, and G. Pezzin, “The glass transition temperature of polymer-diluent systems,” Polymer 33, 4779-4785 (1992). [CrossRef]
  25. M. C. Righetti, G. Ajroldi, G. Marchionni, and G. Pezzin, “Peculiarities of the glass transition temperature of binary polymeric systems: entropic and enthalpic treatments,” Polymer 34, 4307-4313 (1993). [CrossRef]
  26. P. J. Flory, Principles of Polymer Chemistry (Cornell U. Press, 1953).
  27. O. Ostroverkhova, M. He, R. J. Twieg, and W. E. Moerner, “Role of temperature in controlling performance of photorefractive organic glasses,” Chem. Phys. Chem. 4, 732-744(2003). [CrossRef]
  28. H. Bässler, “Charge transport in disordered organic photoconductors: a Monte Carlo simulation study,” Phys. Status Solidi B 175, 15-56 (1993). [CrossRef]
  29. R. H. Young, J. A. Sinicropi, and J. J. Fitzgerald, “Dipole moments, energetic disorder, and charge-transport in molecularly doped polymers,” J. Phys. Chem. 99, 9497-9506 (1995). [CrossRef]
  30. R. A. Marcus and P. J. Siders, “Theory of highly exothermic electron transfer reactions,” J. Phys. Chem. 86, 622-630(1982). [CrossRef]
  31. D. M. Pai, J. F. Yanus, and M. Stolka, “Trap controlled hopping transport,” J. Phys. Chem. 88, 4714-4717 (1984). [CrossRef]
  32. H. Bässler, “Charge-transport in random organic photoconductors,” Adv. Mater. 5, 662-665 (1993). [CrossRef]
  33. D. Van Steenwinckel, E. Hendrickx, A. Persoons, K. Van den Broeck, and C. Samyn, “Influence of the chromophore ionization potential on speed and magnitude of photorefractive effects in poly(N-vinylcarbazole) based polymer composites,” J. Chem. Phys. 112, 11030-11037 (2000). [CrossRef]
  34. T. K. Däubler, R. Bittner, K. Meerholz, V. Cimrová, and D. Neher, “Charge carrier photogeneration, trapping, and space-charge field formation in PVK-based photorefractive materials,” Phys. Rev. B 61, 13515-13527 (2000).
  35. F. Terenziani and A. Painelli, “Supramolecular interactions in clusters of polar and polarizable molecules,” Phys. Rev. B 68, 165405 (2003).
  36. A. Painelli and F. Terenziani, “Multielectron transfer in clusters of polar-polarizable chromophores,” J. Am. Chem. Soc. 125, 5624-5625 (2003). [CrossRef]
  37. A. Painelli and F. Terenziani, “Along the way from molecules to devices. The role of supramolecular interactions,” Synth. Met. 147, 111-115 (2004).
  38. F. Terenziani and A. Painelli, “Collective and cooperative phenomena in molecular materials: dimers of polar chromophores,” J. Lumin. 112, 474-478 (2005).
  39. F. Würthner and S. Yao, “Dipolar dye aggregates: a problem for nonlinear optics, but a chance for supramolecular chemistry,” Angew. Chem., Int. Ed. 39, 1978-1981 (2000).
  40. F. Würthner, S. Yao, J. Schilling, R. Wortmann, M. Redi-Abshiro, E. Mecher, F. Gallego-Gomez, and K. Meerholz, “ATOP Dyes. Optimization of a multifunctional merocyanine chromophore for high refractive index modulation in photorefractive materials,” J. Am. Chem. Soc. 123, 2810-2824 (2001). [CrossRef]
  41. F. Würthner, R. Wortmann, and K. Meerholz, “Chromophore design for photorefractive organic materials,” Chem. Phys. Chem. 3, 17-31 (2002). [CrossRef]
  42. P. M. Borsenberger, L. Pautmeier, and H. Bässler, “Charge transport in disordered molecular solids,” J. Chem. Phys. 94, 5447-5554 (1991). [CrossRef]
  43. P. M. Borsenberger and D. S. Weiss, Organic Photoreceptors for Xerography (Marcel Dekker, 1998), Vol. 59.
  44. R. Angelone, (personal communication, 2007).
  45. Sandalphon, B. Kippelen, K. Meerholz, and N. Peyghambarian, “Ellipsometric measurements of poling birefringence, the Pockels effect and the Kerr effect in high performance photorefractive polymer composites,” Appl. Opt. 35, 2346-2354 (1996). [CrossRef]
  46. H. Moon, J. Hwang, N. Kim, and S. Y. Park, “Synthesis and properties of photorefractive polymers containing indole-based multifunctional chromophore as a pendant group,” Macromolecules 33, 5116-5123 (2000). [CrossRef]
  47. D. R. Lide, ed., CRC Handbook of Chemistry and Physics, 81st ed. (CRC Press, 2000).
  48. C. H. Wang, “Effects of the orientational pair correlation on second order nonlinear optical coefficients,” J. Chem. Phys. 98, 3457-3462 (1993). [CrossRef]
  49. S. J. Chung, K. S. Kim, T. C. Lin, G. S. He, J. Swiatkiewicz, and P. N. Prasad, “Cooperative enhancement of two-photon absorption in multi-branched structures,” J. Phys. Chem. B 103, 10741-10745 (1999). [CrossRef]
  50. D. Beljonne, W. Wenseleers, E. Zojer, Z. G. Shuai, H. Vogel, S. J. K. Pond, J. W. Perry, S. R. Marder, and J. L. Bredas, “Role of dimensionality on the two-photon absorption response of conjugated molecules: the case of octupolar compounds,” Adv. Funct. Mater. 12, 631-641 (2002). [CrossRef]
  51. M. Drobizhev, A. Karotki, Y. Dzenis, A. Rebane, Z. Suo, and C. W. Spangler,“ Strong cooperative enhancement of two-photon absorption in dendrimers,” J. Phys. Chem. B 107, 7540-7543 (2003).
  52. A. Abbotto, L. Beverina, R. Bozio, A. Facchetti, C. Ferrante, G. A. Pagani, D. Pedron, and R. Signorini,” Novel heteroaromatic-based multi-branched dyes with enhanced two-photon absorption activity,” Chem. Commun. 17, 2144-2145 (2003).
  53. F. Stellacci, C. A. Bauer, T. Meyer-Friedrichsen, W. Wenseleers, S. R. Marder, and J. W. Perry, “Ultrabright supramolecular beacons based on the self-assembly of two-photon chromophores on metal nanoparticles,” J. Am. Chem. Soc. 125, 328-329 (2003). [CrossRef]
  54. P. N. Prasad and D. J. Williams, Introduction to NLO Effect in Molecules and Polymers (Wiley, 1991).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited