OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: James C. Wyant
  • Vol. 47, Iss. 36 — Dec. 20, 2008
  • pp: 6723–6733

Near-infrared digital photography to estimate snow correlation length for microwave emission modeling

Ally Mounirou Toure, Kalifa Goïta, Alain Royer, Christian Mätzler, and Martin Schneebeli  »View Author Affiliations


Applied Optics, Vol. 47, Issue 36, pp. 6723-6733 (2008)
http://dx.doi.org/10.1364/AO.47.006723


View Full Text Article

Enhanced HTML    Acrobat PDF (1766 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The study is based on experimental work conducted in alpine snow. We made microwave radiometric and near-infrared reflectance measurements of snow slabs under different experimental conditions. We used an empirical relation to link near-infrared reflectance of snow to the specific surface area (SSA), and converted the SSA into the correlation length. From the measurements of snow radiances at 21 and 35 GHz , we derived the microwave scattering coefficient by inverting two coupled radiative transfer models (the sandwich and six-flux model). The correlation lengths found are in the same range as those determined in the literature using cold laboratory work. The technique shows great potential in the determination of the snow correlation length under field conditions.

© 2008 Optical Society of America

OCIS Codes
(120.5630) Instrumentation, measurement, and metrology : Radiometry
(120.5700) Instrumentation, measurement, and metrology : Reflection
(280.0280) Remote sensing and sensors : Remote sensing and sensors
(280.4991) Remote sensing and sensors : Passive remote sensing

ToC Category:
Remote Sensing and Sensors

History
Original Manuscript: May 9, 2008
Revised Manuscript: November 3, 2008
Manuscript Accepted: October 22, 2008
Published: December 12, 2008

Citation
Ally Mounirou Toure, Kalifa Goïta, Alain Royer, Christian Mätzler, and Martin Schneebeli, "Near-infrared digital photography to estimate snow correlation length for microwave emission modeling," Appl. Opt. 47, 6723-6733 (2008)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-47-36-6723


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. T. Pulliainen, J. Grandell, and M. T. Hallikainen, “HUT snow emission model and its applicability to snow water equivalent retrieval,” IEEE Trans. Geosci. Remote Sens. 37, 1378-1390(1999). [CrossRef]
  2. A. Wiesmann and C. Mätzler, “Microwave emission model of layered snowpacks,” Remote Sens. Environ. 70, 307-316 (1999). [CrossRef]
  3. L. Tsang, C.-T. Chen, A. T. C. Chang, J. Guo, and K.-H. Ding, “Dense media radiative transfer theory based on quasi-crystalline approximation with application to passive microwave remote sensing of snow,” Radio Sci. 35, 731-749 (2000). [CrossRef]
  4. Y.-Q. Jin, Electromagnetic Scattering Modelling for Quantitative Remote Sensing (World Scientific, 1993).
  5. L. Tsang and J. A. Kong, “Application of strong fluctuation random medium theory to scattering from a vegetation-like half space,” IEEE Trans. Geosci. Remote Sens. GE-19, 62-69 (1981). [CrossRef]
  6. S. Colbeck, E. Akitaya, R. Armstrong, H. Gubler, J. Lafeuille, K. Lied, D. McClung, and E. Morris, International Classification for Seasonal Snow on the Ground (University of Colorado, 1990).
  7. R. L. Armstrong, A. Chang, A. Rango, and E. Josberger, “Snow depths and grain-size relationships with relevance for passive microwaves studies,” Ann. Glaciol. 17, 171-176 (1993).
  8. C. Mätzler, “Relation between grain size and correlation length of snow,” J. Glaciol. 48, 461-466 (2002). [CrossRef]
  9. T. C. Grenfell and S. G. Warren, “Representation of a nonspherical ice particle by a collection of independent spheres for scattering and absorption of radiation,” J. Geophys. Res. 104, 31697-31709 (1999). [CrossRef]
  10. C. Mätzler, “Autocorrelation function of granular media with free arrangement of spheres, spherical shells or ellipsoids,” J. Appl. Phys. 81, 1509-1517 (1997). [CrossRef]
  11. R. Parwani, “Correlation function, “http://staff.science.nus.edu.sg/~parwani/c1/node2.html.
  12. P. Debye, H. R. Anderson, and H. Brumberger, “Scattering by an inhomogeneous solid II. The correlation function and its applications,” J. Appl. Phys. 28, 679-683 (1957). [CrossRef]
  13. A. Stogryn, “Correlation functions for random granular media in strong fluctuation theory,” IEEE Trans. Geosci. Remote Sens. GE-22, 150-154 (1984). [CrossRef]
  14. H. Lim, M. E. Veysoglu, S. H. Yueh, R. T. Shin, and J. A. Kong, “Random medium model approach to scattering from a random collection of discrete scatters,” J. Electromagn. Waves Appl. 8, 801-817 (1994).
  15. J. Giddings and E. Lachapelle, “Diffusion theory applied to radiant energy distribution and albedo of snow,” J. Geophys. Res. 66, 181-189 (1961). [CrossRef]
  16. S. G. Warren and W. J. Wiscombe, “A model for the spectral albedo of snow. I: Pure snow,” J. Atmos. Sci. 37, 2734-2745(1980). [CrossRef]
  17. J. Dozier, S. R. Schneider, J. McGinnis, and F. Davis, “Effect of grain size and snowpack water equivalent on visible and near-infrared,” Water Resour. Res. 17, 1213-1221 (1981). [CrossRef]
  18. A. Nolin and J. Dozier, “A hyperspectral method for remotely sensing the grain size of snow,” Remote Sens. Environ. 74, 207-216 (2000). [CrossRef]
  19. D. L. Mitchell, “Effective diameter in radiative transfer: general definition, application, and limitation,” J. Atmos. Sci. 59, 2330-2346 (2002). [CrossRef]
  20. L. Legagneux, A. Cabanes, and F. Dominé, “Measurement of the specific surface area of 176 snow samples using methane adsorption at 77 K,” J. Geophys. Res. 107, 4335 (2002). [CrossRef]
  21. M. Kerbrat, B. Pinzer, T. Huthwelker, H. W. Gäggeler, M. Ammann, and M. Schneebeli, “Measuring the specific surface area of snow with x-ray tomography and gas adsorption: comparison and implications for surface smoothness,” Atmos. Chem. Phys. 8, 1261-1275 (2008). [CrossRef]
  22. M. Matzl and M. Schneebeli, “Measuring specific surface area of snow by near-infrared photography,” J. Glaciol. 52, 558-564 (2006). [CrossRef]
  23. T. H. Painter, N. P. Molotch, M. Cassidy, M. Flanner, and K. Steffen, “Contact spectroscopy for determination of stratigraphy of snow optical grain size,” J. Glaciol. 53, 121-127 (2007). [CrossRef]
  24. A. Wiesmann, C. Mätzler, and T. Wiese, “Radiometric and structural measurements of snow samples,” Radio Sci. 33, 273-289 (1998). [CrossRef]
  25. S. Rosenfeld and N. C. Grody, “Metamorphic signature of snow revealed in SSM/I measurements,” IEEE Trans. Geosci. Remote Sens. 38, 53-63 (2000). [CrossRef]
  26. J. L. Foster, D. K. Hall, A. T. C. Chang, A. Rango, W. Wergin, and E. Erbe, “Effects of snow crystal shape on the scattering of passive microwave radiation,” IEEE Trans. Geosci. Remote Sens. 37, 1165-1168 (1999). [CrossRef]
  27. T. Weise, “Radiometric and structural measurements of snow,” PhD thesis (Inst. of Appl. Physics University of Bern, 1996).
  28. M. Laternser and M. Schneebeli, “Long-term snow climate trends of the Swiss Alps (1931-99),” Int. J. Climatol. 23, 733-750 (2003). [CrossRef]
  29. E. Akitaya, “Studies on depth hoar,” Contrib. Inst. Low Temp. Sci. Hokkaido Univ. Ser. A 26, 1-67 (1974).
  30. D. Marbouty, “An experimental study of temperature-gradient metamorphism,” J. Glaciol. 26, 303-312 (1980).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited