OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: James C. Wyant
  • Vol. 47, Iss. 36 — Dec. 20, 2008
  • pp: 6734–6752

Airborne High Spectral Resolution Lidar for profiling aerosol optical properties

Johnathan W. Hair, Chris A. Hostetler, Anthony L. Cook, David B. Harper, Richard A. Ferrare, Terry L. Mack, Wayne Welch, Luis Ramos Izquierdo, and Floyd E. Hovis  »View Author Affiliations


Applied Optics, Vol. 47, Issue 36, pp. 6734-6752 (2008)
http://dx.doi.org/10.1364/AO.47.006734


View Full Text Article

Enhanced HTML    Acrobat PDF (3209 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A compact, highly robust airborne High Spectral Resolution Lidar (HSRL) that provides measurements of aerosol backscatter and extinction coefficients and aerosol depolarization at two wavelengths has been developed, tested, and deployed on nine field experiments (over 650 flight hours). A unique and advantageous design element of the HSRL system is the ability to radiometrically calibrate the instrument internally, eliminating any reliance on vicarious calibration from atmospheric targets for which aerosol loading must be estimated. This paper discusses the design of the airborne HSRL, the internal calibration and accuracy of the instrument, data products produced, and observations and calibration data from the first two field missions: the Joint Intercontinental Chemical Transport Experiment—Phase B (INTEX-B)/Megacity Aerosol Experiment—Mexico City (MAX-Mex)/Megacities Impacts on Regional and Global Environment (MILAGRO) field mission (hereafter MILAGRO) and the Gulf of Mexico Atmospheric Composition and Climate Study/Texas Air Quality Study II (hereafter GoMACCS/TexAQS II).

© 2008 Optical Society of America

OCIS Codes
(010.0010) Atmospheric and oceanic optics : Atmospheric and oceanic optics
(010.1110) Atmospheric and oceanic optics : Aerosols
(280.0280) Remote sensing and sensors : Remote sensing and sensors
(280.1100) Remote sensing and sensors : Aerosol detection
(280.1310) Remote sensing and sensors : Atmospheric scattering
(280.3640) Remote sensing and sensors : Lidar

ToC Category:
Atmospheric and Oceanic Optics

History
Original Manuscript: June 9, 2008
Revised Manuscript: October 10, 2008
Manuscript Accepted: October 14, 2008
Published: December 12, 2008

Citation
Johnathan W. Hair, Chris A. Hostetler, Anthony L. Cook, David B. Harper, Richard A. Ferrare, Terry L. Mack, Wayne Welch, Luis Ramos Izquierdo, and Floyd E. Hovis, "Airborne High Spectral Resolution Lidar for profiling aerosol optical properties," Appl. Opt. 47, 6734-6752 (2008)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-47-36-6734


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. Intergovernmental Panel on Climate Change, Climate Change 2007: The Physical Science Basis: Contribution of Working Group I to the Fourth Assessment Report of the IPCC, S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K. B. Averyt, M. Tignor, and H. L. Miller, eds. (Cambridge University, 2007), pp. 996.
  2. D. B. Harper, A. Cook, C. Hostetler, J. W. Hair, and T. L. Mack, “NASA Langley airborne High Spectral Resolution Lidar instrument description,” in Proceedings of 23rd International Laser Radar Conference, C. Nagasawa and N. Sugimoto, eds. (ILRC, 2006), p. PD1-5.
  3. J. W. Hair, C. A. Hostetler, R. A. Ferrare, A. L. Cook, and D. B. Harper, “The NASA Langley Airborne High Spectral Resolution Lidar for Measurements of Aerosols and Clouds,” in Proceedings of 23rd International Laser Radar Conference, C. Nagasawa and N. Sugimoto, eds. (ILRC, 2006), pp. 411-414.
  4. J. D. Klett, “Stable analytical inversion solution for processing lidar returns,” Appl. Opt. 20, 211-220 (1981).
  5. J. D. Klett, “Lidar inversion with variable backscatter/extinction ratios,” Appl. Opt. 24, 1638-1643 (1985).
  6. F. G. Fernald, B. M. Herman, and J. A. Reagan, “Determination of aerosol height distributions by lidar,” J. Appl. Meteorol. 11, 482-489 (1972). [CrossRef]
  7. Z. Liu, N. Sugimoto, and T. Murayama, “Extinction-to-backscatter ratio of Asian dust observed with high-spectral-resolution lidar and Raman lidar,” Appl. Opt. 41, 2760-2767 (2002). [CrossRef]
  8. D. Müller, A. Ansmann, I. Mattis, M. Tesche, U. Wandinger, D. Althausen, and G. Pisani, “Aerosol-type-dependent lidar ratios observed with Raman lidar,” J. Geophys. Res. 112, D16202 (2007), doi:10.1029/2006JD008292.. [CrossRef]
  9. S. T. Shipley, D. H. Tracy, E. W. Eloranta, J. T. Tauger, J. T. Sroga, F. L. Roesler, and J. A. Weinman, “High spectral resolution lidar to measure optical scattering properties of atmospheric aerosols. 1: Theory and instrumentation,” Appl. Opt. 22, 3716-3724 (1983).
  10. P. Piironen and E. W. Eloranta, “Demonstration of a high-spectral-resolution lidar based on an iodine absorption filter,” Opt. Lett. 19, 234-236 (1994).
  11. C. J. Grund and E. W. Eloranta, “University of Wisconsin high spectral resolution lidar,” Opt. Eng. 30, 6-12 (1991). [CrossRef]
  12. C. Y. She, R. J. Alvarez II, L. M. Caldwell, and D. A. Krueger, “High-spectral-resolution Rayleigh-Mie lidar measurement of aerosol and atmospheric profiles,” Opt. Lett. 17, 541-543(1992).
  13. D. A. Krueger, L. M. Caldwell, R. J. Alvarez II, and C. Y. She, “Self-consistent method for determining vertical profiles of aerosol and atmospheric properties using a high spectral resolution Rayleigh-Mie lidar,” J. Atmos. Ocean. Technol. 10, 533-545 (1993). [CrossRef]
  14. R. J. Alvarez II, L. M. Caldwell, Y. H. Li, D. A. Krueger, and C. Y. She, “High-spectral-resolution lidar measurement of tropospheric backscatter-ratio with barium atomic blocking filters,” J. Atmos. Oceanic Technol. 7, 876-881 (1990). [CrossRef]
  15. J. W. Hair, L. M. Caldwell, D. A. Krueger, and C.-Y. She, “High-spectral-resolution lidar with iodine-vapor filters: measurement of atmospheric-state and aerosol profiles,” Appl. Opt. 40, 5280-5294 (2001). [CrossRef]
  16. Z. Liu, I. Matsui, and N. Sugimoto, “High-spectral-resolution lidar using an iodine absorption filter for atmospheric measurements,” Opt. Eng. 38, 1661-1670 (1999). [CrossRef]
  17. J. T. Sroga, E. W. Eloranta, S. T. Shipley, F. L. Roesler, and P. J. Tryon, “High spectral resolution lidar to measure optical scattering properties of atmospheric aerosols. 2: Calibration and data analysis,” Appl. Opt. 22, 3725-3732 (1983).
  18. U. Wandinger, D. Müller, C. Böckmann, D. Althausen, V. Matthias, J. Bösenberg, V. Weiss, M. Fiebig, M. Wendisch, A. Stohl, and A. Ansmann, “Optical and microphysical characterization of biomass-burning and industrial-pollution aerosols from multiwavelength lidar and aircraft measurements,” J. Geophys. Res. 107, 8125, doi:10.1029/2000JD000202 (2002). [CrossRef]
  19. M. Esselborn, M. Wirth, A. Fix, M. Tesche, and G. Ehret, “Airborne high spectral resolution lidar for measuring aerosol extinction and backscatter coefficients,” Appl. Opt. 47, 346-358 (2008). [CrossRef]
  20. G. Tenti, C. D. Boley, and R. C. Desai, “On the kinetic model description of Rayleigh-Brillouin scattering from molecular gases,” Can. J. Phys. 52, 285-290 (1974).
  21. A. T. Young, “Rayleigh scattering,” Phys. Today 35, 42-48 (1982). [CrossRef]
  22. C.-Y. She, “Spectral structure of laser light scattering revisited: bandwidths of nonresonant scattering lidars,” Appl. Opt. 40, 4875-4884 (2001). [CrossRef]
  23. P. B. Russell, T. J. Swissler, and M. P. McCormick, “Methodology for error analysis and simulation of lidar aerosol measurements,” Appl. Opt. 18, 3783-3797 (1979).
  24. A. Ansmann, M. Riebesell, and C. Weitkamp, “Measurement of atmospheric aerosol extinction profiles with a Raman lidar,” Opt. Lett. 15, 746-748 (1990).
  25. F. E. Hovis, M. Rhoades, R. L. Burnham, J. D. Force, T. Schum, B. M. Gentry, H. Chen, S. X. Li, J. W. Hair, A. L. Cook, and C. A. Hostetler, “Single-frequency lasers for remote sensing,” Proc. SPIE 5332, 263-270 (2004). [CrossRef]
  26. J. N. Forkey, “Development and demonstration of filtered Rayleigh scattering--a laser based flow diagnostic for planar measurement of velocity, temperature and pressure,” Ph.D. dissertation (Princeton University, 1996).
  27. J. N. Forkey, W. R. Lempert, and R. B. Miles, “Corrected and calibrated I2 absorption model at frequency-doubled Nd:YAG laser wavelengths,” Appl. Opt. 36, 6729-6738 (1997). [CrossRef]
  28. S. W. Henderson, E. H. Yuen, and E. S. Fry, “Fast resonance-detection technique for single-frequency operation of injection-seeded Nd:YAG lasers,” Opt. Lett. 11, 715-717 (1986).
  29. M. P. Larsen, E. Thomas, T. Walther, and E. S. Fry, “Injection seeding of a Ti:sapphire laser using a ramp-hold-fire technique,” in Conference on Lasers and Electro-Optics (Optical Society of America, 1997), pp. 3046-3050.
  30. T. Walther, M. P. Larsen, and E. S. Fry, “Generation of Fourier-transform-limited 35 ns pulses with a ramp-hold-fire seeding technique in a Ti:sapphire laser,” Appl. Opt. 40, 3046-3050(2001). [CrossRef]
  31. E. S. Fry, Q. Hu, and X. Li, “Single frequency operation of an injection-seeded Nd:YAG laser in high noise and vibration environments,” Appl. Opt. 30, 1015-1017 (1991).
  32. A. Arie and R. L. Byer, “Frequency stabilization of the 1064 nm Nd:YAG lasers to Doppler-broadened lines of iodine,” Appl. Opt. 32, 7382-7386 (1993).
  33. A. Arie, S. Schiller, E. K. Gustafson, and R. L. Byer, “Absolute frequency stabilization of diode-laser-pumped Nd:YAG lasers to hyperfine transitions in molecular iodine,” Opt. Lett. 17, 1204-1206 (1992).
  34. G. C. Bjorklund, “Frequency-modulation spectroscopy: a new method for measuring weak absorptions and dispersions,” Opt. Lett. 5, 15-17 (1980).
  35. J. Crafton, C. D. Carter, and G. S. Elliott, “Three-component phase-averaged velocity measurements of an optically perturbed supersonic jet using multi-component planar Doppler velocimetry,” Meas. Sci. Technol. 12, 409-419 (2001). [CrossRef]
  36. A. Bucholtz, “Rayleigh-scattering calculations for the terrestrial atmosphere,” Appl. Opt. 34, 2765-2773 (1995).
  37. U. Wandinger and A. Ansmann, “Experimental Determination of the Lidar Overlap Profile with Raman Lidar,” Appl. Opt. 41, 511-514 (2002). [CrossRef]
  38. P. B. Russell, T. J. Swissler, and M. P. McCormick, “Methodology for error analysis and simulation of lidar aerosol measurements,” Appl. Opt. 18, 3783-3797 (1979).
  39. C. Cattrall, J. A. Reagan, K. Thome, and O. Dubovik, “Variability of aerosol and spectral lidar and backscatter and extinction ratios of key aerosol types derived from selected Aerosol Robotic Network locations,” J. Geophys. Res. 110, D10S11 (2005), doi: 10.1029/2004JD005124. [CrossRef]
  40. Y. Sasano and E. V. Browell, “Light scattering characteristics of various aerosol types derived from multiple wavelength lidar observations,” Appl. Opt. 28, 1670-1679 (1989).
  41. F. Cairo, G. Di Donfrancesco, A. Adriani, L. Pulvirenti, and F. Fierli, “Comparison of various linear depolarization parameters measured by lidar,” Appl. Opt. 38, 4425-4432 (1999). [CrossRef]
  42. T. J. Quinn and J.-M. Chartier, “A new type of iodine cell for stabilized lasers,” IEEE Trans. Instrum. Meas. 42, 405-406(1993). [CrossRef]
  43. J. M. Alvarez, M. A. Vaughan, C. A. Hostetler, W. H. Hunt, and D. M. Winker, “Calibration technique for polarization-sensitive lidars,” J. Atmos. Oceanic Technol. 23, 683-699 (2006). [CrossRef]
  44. Z. Liu, W. Hunt, M. Vaughan, C. Hostetler, M. McGill, K. Powell, D. Winker, and Y. Hu, “Estimating random errors due to shot noise in backscatter lidar observations,” Appl. Opt. 45, 4437-4447 (2006). [CrossRef]
  45. R. R. Rogers, J. W. Hair, C. A. Hostetler, R. A. Ferrare, A. L. Cook, D. B. Harper, M. D. Obland, S. P. Burton, A. Clarke, Y. Shinozuka, J. Redemann, P. Russell, and J. Livingston, “Evaluation of NASA/LaRC airborne High Spectral Resolution Lidar aerosol extinction measurements,” in Proceedings of the 24th International Laser Radar Conference (ILRC, 2008), pp. 940-942.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited