OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: James C. Wyant
  • Vol. 47, Iss. 36 — Dec. 20, 2008
  • pp: 6784–6795

Low-complexity pixel detection for images with misalignment and interpixel interference in holographic data storage

Chi-Yun Chen, Chih-Cheng Fu, and Tzi-Dar Chiueh  »View Author Affiliations

Applied Optics, Vol. 47, Issue 36, pp. 6784-6795 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (1957 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



This paper presents an efficient solution to recovering data pixels of images that have undergone optical and electrical channel impairments in holographic data storage systems. The channel impairments considered include interpixel interference, three types of misalignment, and noise. The proposed misalignment-compensation scheme, consisting of realignment and rate conversion, can effectively eliminate misalignment with more than 84% reduction in additions and 74% reduction in multiplications. In addition, several low-complexity techniques are introduced to reduce the complexity of a two-dimensional maximum a posteriori pixel detection method by up to 95% and do so with negligible degradation in detection performance.

© 2008 Optical Society of America

OCIS Codes
(100.0100) Image processing : Image processing
(100.3010) Image processing : Image reconstruction techniques
(100.3020) Image processing : Image reconstruction-restoration
(200.3050) Optics in computing : Information processing
(200.4960) Optics in computing : Parallel processing
(210.2860) Optical data storage : Holographic and volume memories

ToC Category:
Imaging Systems

Original Manuscript: June 30, 2008
Revised Manuscript: November 1, 2008
Manuscript Accepted: November 6, 2008
Published: December 12, 2008

Chi-Yun Chen, Chih-Cheng Fu, and Tzi-Dar Chiueh, "Low-complexity pixel detection for images with misalignment and interpixel interference in holographic data storage," Appl. Opt. 47, 6784-6795 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. J. Coufal, G. T. Sincerbox, and D. Psaltis, eds., Holographic Data Storage (Springer-Verlag, 2000).
  2. L. Hesselink, S. S. Orlov, and M. C. Bashaw, “Holographic data storage systems,” in Proceedings of the IEEE, Vol. 92, pp. 1231-1280 (2004). [CrossRef]
  3. H. Horimai and X. Tan, “Holographic information storage system: today and future,” IEEE Trans. Magn. 43, 943-947(2007). [CrossRef]
  4. L. Dhar, K. Curtis, and T. Fäcke, “Holographic data storage: coming of age,” Nat. Photon. 2, 403-405 (2008). [CrossRef]
  5. L. Menetrier and G. W. Burr, “Density implications of shift compensation postprocessing in holographic storage systems,” Appl. Opt. 42, 845-860 (2003). [CrossRef] [PubMed]
  6. S. G. Srinivasa and S. W. McLaughlin, “Signal recovery due to rotational pixel misalignment,” in Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing (2005), pp. IV-121-IV-124.
  7. M. Ayres, A. Hoskins, and K. Curtis, “Image oversampling for page-oriented optical data storage,” Appl. Opt. 45, 2459-2464 (2006). [CrossRef] [PubMed]
  8. M. Keskinoz and B. Kumar, “Application of linear minimum mean-squared-error equalization for volume holographic data storage,” Appl. Opt. 38, 4387-4393 (1999). [CrossRef]
  9. X. Chen, K. M. Chugg, and M. A. Neifeld, “Near-optimal parallel distributed data detection for page-oriented optical memories,” IEEE J. Sel. Top. Quantum Electron. 4, 866-879(1998). [CrossRef]
  10. B. M. King and M. A. Neifeld, “Parallel detection algorithm for page-oriented optical memories,” Appl. Opt. 37, 6275-6298(1998). [CrossRef]
  11. M. Keskinoz and B. Kumar, “Discrete magnitude-squared channel modeling, equalization, and detection for volume holographic storage channels,” Appl. Opt. 43, 1368-1378(2004). [CrossRef] [PubMed]
  12. W. Chou and M. A. Neifeld, “Interleaving and error correction in volume holographic memory systems,” Appl. Opt. 37, 6951-6968 (1998). [CrossRef]
  13. C. Gu, F. Dai, and J. Hong, “Statistics of both optical and electrical noise in digital volume holographic data storage,” IEEE Electron. Lett. 32, 1400-1402 (1996). [CrossRef]
  14. G. W. Burr, J. Ashley, H. Coufal, R. K. Grygier, J. A. Hoffnagle, C. M. Jefferson, and B. Marcus, “Modulation coding for pixel-matched holographic data storage,” Opt. Lett. 22, 639-641 (1997). [CrossRef] [PubMed]
  15. M. Goldberg and H. Sun, “Image sequence coding using vector quantization,” IEEE Trans. Commun. 34, 703-710 (1986). [CrossRef]
  16. K. J. Pharris, “Methods and systems for holographic data recovery,” U.S. patent application 20050018263 (27 January, 2005).
  17. R. Y. Shao, S. Lin, and M. P. C. Fossorier, “Two simple stopping criteria for turbo decoding,” IEEE Trans. Commun. 47, 1117-1120 (1999). [CrossRef]
  18. M. R. Ayres, A. Hoskins, and K. R. Curtis, “Processing data pixels in a holographic data storage system,” WIPO patent WO/2006/093945 (8 September, 2006).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited