OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: James C. Wyant
  • Vol. 47, Iss. 36 — Dec. 20, 2008
  • pp: 6816–6831

Reconstruction of the aerosol optical parameters from the data of sensing with a multifrequency Raman lidar

Svetlana V. Samoilova and Yurii S. Balin  »View Author Affiliations


Applied Optics, Vol. 47, Issue 36, pp. 6816-6831 (2008)
http://dx.doi.org/10.1364/AO.47.006816


View Full Text Article

Enhanced HTML    Acrobat PDF (1518 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A method of interpreting data of multifrequency Raman lidar sensing is developed. An algorithm for separating aerosol layers with different scattering properties and subsequently estimating the average value of the lidar ratio and Ångström parameter within individual layers is suggested. The algorithm allows the error of reconstructing the backscattering coefficient from daytime observations to be at least halved. A well-posed numerical differentiation algorithm for determining the extinction coefficient is suggested for the interpretation of nighttime measurements based on the transformation of the range of allowable values that requires a solution of nonlinear equations. An iterative procedure envisaged for linearization improves the spatial resolution compared with the conventional methods. The methods can be successfully used to process routine lidar measurements under conditions of a priori uncertainty.

© 2008 Optical Society of America

OCIS Codes
(010.3640) Atmospheric and oceanic optics : Lidar
(290.5860) Scattering : Scattering, Raman

ToC Category:
Atmospheric and Oceanic Optics

History
Original Manuscript: June 20, 2008
Revised Manuscript: October 21, 2008
Manuscript Accepted: November 5, 2008
Published: December 15, 2008

Citation
Svetlana V. Samoilova and Yurii S. Balin, "Reconstruction of the aerosol optical parameters from the data of sensing with a multifrequency Raman lidar," Appl. Opt. 47, 6816-6831 (2008)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-47-36-6816


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. M. Winker, J. Pelon, and M. P. McCormick, “The CALIPSO mission: spaceborne lidar for observations of aerosols and clouds,” Proc. SPIE 4893, 1-11 (2003).
  2. J. BösenbergA. Ansmann, J. M. Baldasano, D. Balis, C. Böckmann, B. Calpini, A. Chaikovsky, P. Flamant, A. Hågård, V. Mitev, A. Papayannis, J. Pelon, D. Resendes, J. Schneider, N. Spinelli, T. Trickl, G. Vaughan, G. Visconti, and M. Wiegner, “EARLINET: a European aerosol research lidar network,” in Advances in Laser Remote Sensing, A.Dabas, C.Loth, and J.Pelon, eds. (Editions de L'Ecole Polytechnique, 2001), pp. 155-158.
  3. T. Murayama, N. Sugimoto, I. Uno, K. Kinoshita, K. Aoki, N. Hagiwara, Z. Liu, I. Matsui, T. Sakai, T. Shibata, K. Arao, B.-J. Sohn, J.-G. Won, S.-C. Yoon, T. Li, J. Zhou, H. Hu, M. Abo, K. Iokibe, R. Koga, and Y. Iwasaka, “Ground-based network observation of Asian dust events of April 1998 in east Asia,” J. Geophys. Res. 106, 18345-18359 (2001). [CrossRef]
  4. A. P. Chaikovsky, A. P. Ivanov, Yu. S. Balin, A. V. Elnikov, G. F. Tulinov, I. I. Plusnin, O. A. Bukin, and B. B. Chen, “CIS-LINET--lidar network for monitoring aerosol and ozone in CIS regions,” in Reviewed and Revised Papers Presented at the 23d ILRC, C. Nagasava and N. Sugimoto, eds. (Nara, 2006), pp. 671-672.
  5. S. N. Pandis and J. H. Seinfeld, Atmospheric Chemistry and Physics (Wiley, 1998).
  6. L. Elterman, “Aerosol measurements in the troposphere and stratosphere,” Appl. Opt. 5, 1769-1776 (1966). [CrossRef]
  7. R. B. Stull, An Introduction to Boundary Layer Meteorology, (Kluwer Academic, 1988).
  8. M. V. Panchenko and S. A. Terpugova, “Annual behavior of the content of submicron aerosol in the troposphere over West Siberia,” Atmos. Oceanic Opt. 7, 553-557 (1994).
  9. C. Böckmann, U. Wandinger, A. Ansmann, J. Bösenberg, V. Amiridis, A. Boselli, A. Delaval, F. De Tomasi, M. Frioud, I. Videnov Grigorov, A. Hågård, M. Horvat, M. Iarlori, L. Komguem, S. Kreipl, G. Larcheveque, V. Matthias, A. Papayannis, G. Pappalardo, F. Rocadenbosch, J. A. Rodrigues, J. Schneider, V. Shcherbakov, and M. Wiegner, “Aerosol lidar intercomparison in the framework of the EARLINET project. 2. Aerosol backscatter algorithms,” Appl. Opt. 43, 977-989 (2004). [CrossRef]
  10. G. Pappalardo, A. Amodeo, M. Pandolfi, U. Wandinger, A. Ansmann, J. Bösenberg, V. Matthias, V. Amiridis, F. De Tomasi, M. Frioud, M. Iarlori, L. Komguem, A. Papayannis, F. Rocadenbosch, and X. Wang, “Aerosol lidar intercomparison in the framework of the EARLINET project: 3. Raman lidar algorithm for aerosol extinction, backscatter, and lidar ratio,” Appl. Opt. 43, 5370-5385 (2004). [CrossRef]
  11. A. P. Chaikovsky, A. I. Bril, V. V. Barun, O. Dubovik, B. N. Holben, P. Goloub, and P. Sobolewski, “Methodology and sample results of retrieving aerosol parameters by combined multiwavelength lidar and Sun-sky scanning measurements,” Proc. SPIE 5397, 146-157 (2004).
  12. F. G. Fernald, “Analysis of atmospheric lidar observations: some comments,” Appl. Opt. 23, 652-653 (1984).
  13. V. A. Kovalev, “Lidar measurements of the vertical aerosol extinction profiles with range-dependent backscatter-to-extinction ratios,” Appl. Opt. 32, 6053-6065 (1993).
  14. V. A. Kovalev and W. E. Eichinger, Elastic Lidar. Theory, Practice, and Analysis Methods (Wiley, 2004).
  15. S. Young, “Analysis of backscatter profiles in optically thin clouds,” Appl. Opt. 34, 7019-7031 (1995).
  16. J. Ackermann, “Two-wavelength lidar inversion algorithm for two-component atmosphere,” Appl. Opt. 36, 5134-5143 (1997). [CrossRef]
  17. G. J. Kunz, “Two-wavelength lidar inversion algorithm,” Appl. Opt. 38, 1015-1020 (1999). [CrossRef]
  18. J. D. Spinhirne, S. Chudamani, J. F. Cavanaugh, and J. L. Buffon, “Aerosol and cloud backscatter at 1.06, 1.54 and 0.53 μm by airborne hard-target calibrated Nd:YAG/methane Raman lidar,” Appl. Opt. 36, 3475-3490 (1997). [CrossRef]
  19. A. Ångström, “Circumsolar radiation as a measure of the turbidity of the atmosphere. Part 2,” Appl. Opt. 13, 1477-1480 (1974). [CrossRef]
  20. A. Ansmann, U. Wandinger, M. Riebesell, C. Weitkamp, and W. Michaelis, “Independent measurement of the extinction and backscatter profiles in cirrus clouds by using a combined Raman elastic-backscatter lidar,” Appl. Opt. 31, 7113-7131 (1992).
  21. V. E. Zuev and I. E. Naats, Inverse Problems of Lidar Sensing of the Atmosphere (Springer-Verlag, 1983).
  22. C. E. Junge, Air Chemistry and Radioactivity (Academic, 1963).
  23. G. V. Rosenberg, “Reconstruction of aerosol microphysical parameters from data of complex optical measurements,” Izv. Acad. Sci. USSR Atmos. Oceanic Phys. 12, 1159-1167 (1976).
  24. F. C. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).
  25. A. H. Omar, D. M. Winker, and J.-G. Won, “Aerosol models for the CALIPSO lidar inversion algorithms,” Proc. SPIE 5240, 153-164 (2004).
  26. A. H. Omar, J.-G. Won, D. M. Winker, S.-C. Yoon, O. Dubovik, and M. P. McCormick, “Development of global aerosol models using cluster analysis of Aerosol Robotic Network (AERONET) measurements,” J. Geophys. Res. 110, D10S14, doi:10.1029/2004JD004874 (2005). [CrossRef]
  27. I. Veselovskii, A. Kolgotin, V. Griaznov, D. Muller, K. Franke, and D. M. Whiteman, “Inversion of multiwavelength Raman lidar data for retrieval of bimodal aerosol size distribution,” Appl. Opt. 43, 1180-1195 (2004). [CrossRef]
  28. www.earlinet.org (NA3 folder).
  29. G. I. Marchuk, Methods of Numerical Mathematics (Springer, 1975).
  30. A. E. Tikhonov and V. Y. Arsenin, Solutions of Ill-Posed Problems (Wiley, 1977).
  31. P. Pornsawad, C. Böckmann, C. Ritter, and M. Rafler, “Ill-posed retrieval of aerosol extinction coefficient profiles from Raman lidar data by regularization,” Appl. Opt. 47, 1649-1661 (2008). [CrossRef]
  32. V. Shcherbakov, “Regularized algorithm for Raman lidar data processing,” Appl. Opt. 46, 4879-4889 (2007). [CrossRef]
  33. S. I. Kavkyanov and S. V. Samoilova “Numerical differentiation of experimental data by using the Fourier transform,” Atmos. Oceanic Opt. 3, 1102-1106 (1990).
  34. G. I. Vasilenko, Theory of Reconstructing of Signals: Reduction to an Ideal Instrument in Physics and Technology (Soviet Radio, 1979) (in Russian).
  35. S. V. Samoilova, Yu. S. Balin, and A. D. Ershov, “Stable procedure for retrieval of optical characteristics of aerosol from combination lidar sounding data,” Izv. Atmos. Oceanic Phys. 39, 395-404 (2003).
  36. J. Ackerman, “The extinction-to-backscatter ratio of tropospheric aerosol: a numerical study,” J. Atmos. Oceanic Technol 15, 1043-1050 (1998).
  37. M. del Guasta, M. Morandi, L. Stefanutti, J. Brechet, and J. Piquad, “One year of cloud lidar data from d'Urville (Antarctica). 1. General overview of geometrical and optical properties,” J. Geophys. Res. 98, 18575-18587 (1993). [CrossRef]
  38. E. W. Eloranta, I. A. Razenkov, and J. P. Garcia, “Arctic observations with the University of Wisconsin high spectral resolution lidar,” in Reviewed and Revised Papers Presented at the 23d ILRC, C.Nagasava and N.Sugimoto, eds. (Nara, 2006), pp. 399-402.
  39. D. Müller, U. Wandinger, and A. Ansmann, “Microphysical particle parameters from extinction and backscatter lidar data by inversion with regularization: theory,” Appl. Opt. 38, 2346-2357 (1999). [CrossRef]
  40. C. Böckmann, I. Mironova, D. Müller, L. Schneidenbach, and R. Nessler, “Microphysical aerosol parameters from multiwavelength lidar,” J. Opt. Soc. Am. A 22, 518-528(2005). [CrossRef]
  41. S. V. Samoilova, Yu. S. Balin, M. M. Krekova, and D. M. Winker, “Method for reconstructing the atmospheric optical parameters from the data of polarization lidar sensing,” Appl. Opt. 44, 3499-3509 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited