OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: James C. Wyant
  • Vol. 47, Iss. 36 — Dec. 20, 2008
  • pp: 6832–6841

Interferometric testbed for nanometer level stabilization of environmental motion over long time scales

Kenji Numata and Jordan Camp  »View Author Affiliations

Applied Optics, Vol. 47, Issue 36, pp. 6832-6841 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (1140 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We developed an interferometric testbed to stabilize environmental motions over time scales of several hours and a length scale of 1 m . Typically, thermal and seismic motions on the ground are larger than 1 μm over these scales, affecting the precision of more sensitive measurements. To suppress such motions, we built an active stabilization system composed of interferometric sensors, a hexapod actuator, and a frequency-stabilized laser. With this stabilized testbed, environmental motions were suppressed down to the nanometer level. This system will allow us to perform sensitive measurements, such as ground testing of the Laser Interferometer Space Antenna, in the presence of environmental noise.

© 2008 Optical Society of America

OCIS Codes
(000.2780) General : Gravity
(120.7280) Instrumentation, measurement, and metrology : Vibration analysis
(300.6380) Spectroscopy : Spectroscopy, modulation
(350.6090) Other areas of optics : Space optics
(120.4880) Instrumentation, measurement, and metrology : Optomechanics

ToC Category:
Instrumentation, Measurement, and Metrology

Original Manuscript: September 29, 2008
Manuscript Accepted: October 31, 2008
Published: December 15, 2008

Kenji Numata and Jordan Camp, "Interferometric testbed for nanometer level stabilization of environmental motion over long time scales," Appl. Opt. 47, 6832-6841 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. P. Bender, K. Danzmann, and the LISA Study Team, “Laser interferometer space antenna for the detection of gravitational waves, pre-Phase A report,” 2nd ed. Tech. Rep. MPQ233 (Max-Planck-Institut für Quantenoptik, 1998).
  2. M. Stephens, R. Craig, J. Leitch, R. Pierce, R. Nerem, P. Bender, and B. Loomis, “Demonstration of an interferometric laser ranging system for a follow-on gravity mission to GRACE,” in Proceedings of IEEE International Conference on Geoscience and Remote Sensing Symposium (IEEE, 2006), pp. 1115-1118. [CrossRef]
  3. Y. Aso, M. Ando, K. Kawabe, S. Otsuka, and K. Tsubono, “Stabilization of a Fabry-Perot interferometer using a suspension-point interferometer,” Phys. Lett. A 327, 1-8 (2004). [CrossRef]
  4. J. L. Hall, L. Hollberg, T. Baer, and H. G. Robinson, “Optical heterodyne saturation spectroscopy,” Appl. Phys. Lett. 39, 680-682 (1981). [CrossRef]
  5. A. Araya, T. Kunugi, Y. Fukao, I. Yamada, N. Suda, S. Maruyama, N. Mio, and S. Moriwaki, “Iodine-stabilized Nd:YAG laser applied to a long-baseline interferometer for wideband Earth strain observations,” Rev. Sci. Instrum. 73, 2434-2439 (2002). [CrossRef]
  6. D. Shaddock, B. Ware, P. G. Halverson, R. E. Spero, and B. Klipstein, “Overview of the LISA phasemeter,” in Proceedings of Laser Interferometer Space Antenna: 6th International LISA Symposium, S. M. Merkowitz and J. C. Livas, eds. (American Institute of Physics, 2006), pp. 654-660.
  7. D. Weise, C. Braxmaier, M. Kersten, W. Holota, and U. Johann, “Optical design of the LISA interferometric metrology system,” in Proceedings of Laser Interferometer Space Antenna: 6th International LISA Symposium, S. M. Merkowitzand J. C. Livas, eds. (American Institute of Physics, 2006), pp. 389-394.
  8. D. Shaddock and A. Abromovici, “Solution-assisted optical contacting: components in optical contact can be adjusted for about a minute,” NASA Tech. Brief NPO30731 (NASA, 2004), http://www.nasatech.com/Briefs/Mar04/NPO30731.html.
  9. E. J. Elliffe, J. Bogenstahl, A. Deshpande, J. Hough, C. Killow, S. Reid, D. Robertson, S. Rowan, H. Ward, and G. Cagnoli, “Hydroxide-catalysis bonding for stable optical systems for space,” Class. Quantum Grav. 22, S257-S267 (2005). [CrossRef]
  10. G. Heinzel, C. Braxmaier, M. Caldwell, K. Danzmann, F. Draaisma, A. Garci'a, J. Hough, O. Jennrich, U. Johann, C. Killow, K. Middleton, M. te Plate, D. Robertson, A. Rüdiger, R. Schilling, F. Steier, V. Wand, and H. Ward, “Successful testing of the LISA Technology Package (LTP) interferometer engineering model,” Class. Quantum Grav. 22, S149-S154 (2005). [CrossRef]
  11. K. Liu, J. M. Fitzgerald, and F. L. Lewis, “Kinematic analysis of a Stewart platform manipulator,” IEEE Trans. Ind. Electron. 40, 282-293 (1993). [CrossRef]
  12. C. Pernechele, F. Bortoletto, and K. Reif, “Hexapod control for an active secondary mirror: general concept and test results,” Appl. Opt. 37, 6816-6821 (1998). [CrossRef]
  13. J. A. Dooley and P. R. Lawson, “Technology plan for the Terrestrial Planet Finder Coronagraph,” JPL publication 05-8 (Jet Propulsion Laboratory, 2005).
  14. B. Barish and R. Weiss, “LIGO and the detection of gravitational waves,” Phys. Today 52, 44-50 (1999). [CrossRef]
  15. F. Raab and M. Fine, “The effect of Earth tides on LIGO interferometers,” LIGO document LIGO-T970059-01-D (Laser Interferometer Gravitation Wave Observatory, 1997), http://www.ligo.caltech.edu/docs/T/T970059-01.pdf.
  16. LSC Advanced Detector Committee, “LSC instrument science white paper 2007,” LIGO document LIGO-T070137-00-R (Laser Interferometer Gravitational Wave Observatory, 2007), http://www.ligo.caltech.edu/docs/T/T070137-05/T070137-05.pdf.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited