OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: James C. Wyant
  • Vol. 47, Iss. 36 — Dec. 20, 2008
  • pp: 6860–6870

Excess noise reduction by optical technique in amplitude-sensitive heterodyne interferometer for small differential phase detection

Hui-Kang Teng and Kuo-Chen Lang  »View Author Affiliations


Applied Optics, Vol. 47, Issue 36, pp. 6860-6870 (2008)
http://dx.doi.org/10.1364/AO.47.006860


View Full Text Article

Enhanced HTML    Acrobat PDF (1058 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

An amplitude-sensitive technique associated with a heterodyne interferometer for detecting small differential phase is reported. The excess noise with the amplitude-sensitive technique is reduced by optical subtraction instead of electronic subtraction. The differential phase introduced by the orthogonally polarized laser beams is converted to the amplitudes of two heterodyne interferometric signals, which presents amplitude and phase quadrature simultaneously. Thus the excess noise power and quantum noise power are both differential phase dependent. The advantages of differential and additive operations by optical technique and the real time differential phase determination without phase lock in are demonstrated experimentally. The theoretical signal-to-noise ratio (SNR) and minimum detectable differential phase are derived, which takes quantum noise and excess noise into consideration. The experimental results demonstrated the resolutions of differential phase detection closes to 10 6 rad / Hz ( 10 13 m / Hz ) level over 100 kHz bandwidth and at 10 8 rad / Hz ( 10 15 m / Hz ) level over 125 MHz bandwidth, respectively, under 2.5 mW incident power.

© 2008 Optical Society of America

OCIS Codes
(120.3180) Instrumentation, measurement, and metrology : Interferometry
(120.3940) Instrumentation, measurement, and metrology : Metrology
(120.5050) Instrumentation, measurement, and metrology : Phase measurement

ToC Category:
Instrumentation, Measurement, and Metrology

History
Original Manuscript: August 15, 2008
Manuscript Accepted: November 4, 2008
Published: December 18, 2008

Citation
Hui-Kang Teng and Kuo-Chen Lang, "Excess noise reduction by optical technique in amplitude-sensitive heterodyne interferometer for small differential phase detection," Appl. Opt. 47, 6860-6870 (2008)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-47-36-6860


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. Lawall and E. Kessler, “Michelson interferometry with 10 pm accuracy,” Rev. Sci. Instrum. 71, 2669-2676 (2000). [CrossRef]
  2. K. McKenzie, M. B. Gray, P. K. Lam, and D. E. McClelland, “Technical limitations to homodyne detection at audio frequency,” Appl. Opt. 46, 3389-3395 (2007). [CrossRef] [PubMed]
  3. M. Schiess and B. S. Johansson, “Excess noise in heterodyne interferometer,” IEE Proc. J. 140, 217-220 (1993).
  4. G. L. Abbas, V. W. S. Chan, and T. K. Yee, “Local-oscillator excess-noise suppression for homodyne and heterodyne detection,” Opt. Lett. 8, 419-421 (1983). [CrossRef] [PubMed]
  5. H. A. Bachor and P. T. H. Fisk, “Quantum noise--a limit in photodetection,” Appl. Phys. B 49, 291-300 (1989). [CrossRef]
  6. T. C. Ralph, E. H. Huntington, C. C. Harb, B. C. Buchler, P. K. Lam, D. E. McClelland, and H. A. Bachor, “Understanding and controlling the laser intensity noise,” Opt. Quantum Electron. 31, 583-598 (1999). [CrossRef]
  7. A. J. Stevenson, M. B. Gray, H.-A. Bachor, and D. E. McClelland, “Quantum-noise-limited interferometric phase measurement,” Appl. Opt. 32, 3481-3488 (1993). [CrossRef] [PubMed]
  8. M. Mlejnek, “Balanced differential phase-shift keying detector performance: an analytic study,” Opt. Lett. 31, 2266-2268(2006). [CrossRef] [PubMed]
  9. K. X. Sun, M. M. Fejer, E. K. Gustafson, and B. L. Byer, “Balanced heterodyne sensing extraction in a post-modulated Sagnac interferometer at low frequency,” Opt. Lett. 22, 1485-1487 (1997). [CrossRef]
  10. G. L. Abbas, V. W. S. Chan, and T. K. Yee, “A dual-detector optical heterodyne receiver for local oscillator noise suppression,” J. Lightwave Technol. 3, 1110-1122 (1985). [CrossRef]
  11. C. Chou, C. W. Lyu, and L. C. Peng, “Polarized differential-phase laser scanning microscope,” Appl. Opt. 40, 95-99(2001). [CrossRef]
  12. H. K. Teng, C. Chou, C. N. Chang, and H. T. Wu, “Application of phase-to-amplitude conversion technique to linear birefringence measurements,” Appl. Opt. 42, 1798-1804(2003). [CrossRef] [PubMed]
  13. C. Chou, H. K. Teng, C. C. Tsai, and L. P. Yu, “Balanced detector interferometric ellipsometer,” J. Opt. Soc. Am. A 23, 2871-2879 (2006). [CrossRef]
  14. C. C. Rosa and A. G. Podoleanu, “Limitation of the achievable sensing-to-noise ratio in optical coherence tomography due to mismatch of the balanced receiver,” Appl. Opt. 43, 4802-4815(2004). [CrossRef] [PubMed]
  15. J. H. Shapiro, “Quantum noise and excess noise in optical homodyne and heterodyne receivers,” IEEE J. Quantum Electron. 21, 237-250 (1985). [CrossRef]
  16. D. S. Ly-Gagnon, S. Tsukamoto, K. Katoh, and K. Kikuchi, “Coherent detection of optical quadrature phase-shift keying sensing with carrier phase estimation,” J. Lightwave Technol. 24, 12-21 (2006). [CrossRef]
  17. P. C. D. Hobbs, “Ultrasensitive laser measurements without tears,” Appl. Opt. 36, 903-920 (1997). [CrossRef] [PubMed]
  18. J. J. De Yoreo and B. W. Woods, “Investigation of strain birefringence and wavefront distortion in 001 plates of KD2PO4,” UCRL-JC-108125 (Lawrence Livermore National Laboratory, 1991).
  19. H. K. Teng and K. C. Lang, “Heterodyne interferometer for displacement measurement with amplitude quadrature and noise suppression,” Opt. Commun. 280, 16-22 (2007). [CrossRef]
  20. S. Cohen, “Heterodyne detection: phase front alignment, beam spot size, and detector uniformity,” Appl. Opt. 14, 1953-1959(1975). [CrossRef] [PubMed]
  21. G. Mana, “Diffraction effects in optical interferometers illuminated by laser sources,” Metrologia 26, 87-93 (1989). [CrossRef]
  22. J. W. Wagner and J. B. Spicer, “Theoretical noise-limited sensitivity of classical interferometry,” J. Opt. Soc. Am. B 4, 1316-1326 (1987). [CrossRef]
  23. M. C. Cox, N. J. Copner, and B. Williams, “High sensitivity precision relative intensity noise calibration standard using low noise reference laser source,” IEE. Proc. Sci. Meas. Technol. 145, 163-165 (1998). [CrossRef]
  24. H. A. Haus, “Detection,” in Electromagnetic Noise and Quantum Optical Measurements, (Springer-Verlag, 2000), pp. 281-302.
  25. Waveform Generation, Measurements and Analysis Committee (TC-10), “IEEE standard for digitizing waveform recordings,” IEEE-STD-1057-2007 (2007).
  26. T. C. Ralph, E. H. Huntington, C. C. Harb, B. C. Buchler, P. K. Lam, D. E. McClelland, and H. A. Bachor, “Understanding and controlling the laser intensity noise,” Opt. Quantum Electron. 31, 583-598 (1999). [CrossRef]
  27. E. N. Ivanov and L. Hollberg, “Wide-band suppression of laser intensity noise,” Joint Meeting of the European Time and Frequency Forum and the IEEE International Frequency Control Symposium, Geneva, Switzerland (29 May 2007), pp. 1082-1087.
  28. M. B. Gray, J. H. Chow, K. McKenzie, and D. E. McClelland, “Using a passive fiber ring cavity to generate shot-noise-limited laser light for low-power quantum optics applications,” IEEE Photonics Technol. Lett. 19, 1063-1065 (2007). [CrossRef]
  29. H. K. Teng, K. C. Lang, and C. C. Yen, “Optical polarization rotating technique for characterizing linear birefringence with full range,” Opt. Eng. 44, 123602(2005). [CrossRef]
  30. B. K. Spears and N. B. Tufillaro, “A chaotic lock-in amplifier,” Am. J. Phys. 76, 213-217 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited