OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: James C. Wyant
  • Vol. 47, Iss. 4 — Feb. 1, 2008
  • pp: 561–577

Backward-mode multiwavelength photoacoustic scanner using a planar Fabry–Perot polymer film ultrasound sensor for high-resolution three-dimensional imaging of biological tissues

Edward Zhang, Jan Laufer, and Paul Beard  »View Author Affiliations


Applied Optics, Vol. 47, Issue 4, pp. 561-577 (2008)
http://dx.doi.org/10.1364/AO.47.000561


View Full Text Article

Enhanced HTML    Acrobat PDF (3915 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A multiwavelength backward-mode planar photoacoustic scanner for 3D imaging of soft tissues to depths of several millimeters with a spatial resolution in the tens to hundreds of micrometers range is described. The system comprises a tunable optical parametric oscillator laser system that provides nanosecond laser pulses between 600 and 1200   nm for generating the photoacoustic signals and an optical ultrasound mapping system based upon a Fabry–Perot polymer film sensor for detecting them. The system enables photoacoustic signals to be mapped in 2D over a 50   mm diameter aperture in steps of 10   μm with an optically defined element size of 64   μm . Two sensors were used, one with a 22   μm thick polymer film spacer and the other with a 38   μm thick spacer providing 3   dB acoustic bandwidths of 39 and 22   MHz , respectively. The measured noise equivalent pressure of the 38   μm sensor was 0.21   kPa over a 20   MHz measurement bandwidth. The instrument line-spread function (LSF) was measured as a function of position and the minimum lateral and vertical LSFs found to be 38 and 15   μm , respectively. To demonstrate the ability of the system to provide high-resolution 3D images, a range of absorbing objects were imaged. Among these was a blood vessel phantom that comprised a network of blood filled tubes of diameters ranging from 62 to 300   μm immersed in an optically scattering liquid. In addition, to demonstrate the applicability of the system to spectroscopic imaging, a phantom comprising tubes filled with dyes of different spectral characteristics was imaged at a range of wavelengths. It is considered that this type of instrument may provide a practicable alternative to piezoelectric-based photoacoustic systems for high-resolution structural and functional imaging of the skin microvasculature and other superficial structures.

© 2008 Optical Society of America

OCIS Codes
(110.7170) Imaging systems : Ultrasound
(170.1460) Medical optics and biotechnology : Blood gas monitoring
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(170.5120) Medical optics and biotechnology : Photoacoustic imaging
(110.5125) Imaging systems : Photoacoustics

ToC Category:
Imaging Systems

History
Original Manuscript: June 21, 2007
Revised Manuscript: September 25, 2007
Manuscript Accepted: October 5, 2007
Published: January 25, 2008

Virtual Issues
Vol. 3, Iss. 3 Virtual Journal for Biomedical Optics

Citation
Edward Zhang, Jan Laufer, and Paul Beard, "Backward-mode multiwavelength photoacoustic scanner using a planar Fabry-Perot polymer film ultrasound sensor for high-resolution three-dimensional imaging of biological tissues," Appl. Opt. 47, 561-577 (2008)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-47-4-561


Sort:  Year  |  Journal  |  Reset  

References

  1. M. Xu and L. V. Wang, "Photoacoustic imaging in biomedicine," Rev. Sci. Instrum. 77, 041101 (2006). [CrossRef]
  2. J. Laufer, C. E. Elwell, D. T. Delpy, and P. C. Beard, "In vitro measurements of absolute blood oxygen saturation using pulsed near-infrared photoacoustic spectroscopy: accuracy and resolution," Phys. Med. Biol. 50, 4409-4428 (2005). [CrossRef] [PubMed]
  3. J. G. Laufer, D. T. Delpy, C. E. Elwell, and P. C. Beard, "Quantitative spatially resolved measurement of tissue chromophore concentrations using photoacoustic spectroscopy: application to the measurement of blood oxygenation and haemoglobin concentration," Phys. Med. Biol. 52, 141-168 (2007). [CrossRef]
  4. A. A. Oraevsky, E. V. Savateeva, S. V. Solomatin, A. Karabutov, V. G. Andreev, Z. Gatalica, T. Khamapirad, and P. M. Henrichs, "Optoacoustic imaging of blood for visualization and diagnostics of breast cancer," Proc. SPIE 4618, 81-94 (2002). [CrossRef]
  5. S. Manohar, A. Kharine, J. C. G. van Hespen, W. Steenbergen, and T. G. van Leeuwen, "The Twente photoacoustic mammoscope: system overview and performance," Phys. Med. Biol. 50, 2543-2557 (2005). [CrossRef] [PubMed]
  6. H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, "Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging," Nat. Biotechnol. 24, 848-850 (2006). [CrossRef] [PubMed]
  7. J. T. Oh, M. L. Li, H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, "Three-dimensional imaging of skin melanoma in vivo by dual-wavelength photoacoustic microscopy," J. Biomed. Opt. 11, 034032 (2006). [CrossRef]
  8. J. A. Viator, G. Au, G. Paltauf, S. L. Jacques, S. A. Prahl, H. Ren, Z. Chen, and J. S. Nelson, "Clinical testing of a photoacoustic probe for port wine stain depth determination," Lasers Surg. Med. 30, 141-148 (2002). [CrossRef] [PubMed]
  9. H. F. Zhang, K. Maslov, G. Soica, and L. V. Wang, "Imaging accute thermal burns by photoacoustic microscopy," J. Biomed. Opt. 11, 054033 (2006). [CrossRef] [PubMed]
  10. X. Wang, Y. Pang, G. Ku, X. Xie, G. Stoica, and L. V. Wang, "Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain," Nat. Biotechnol. 21, 803-806 (2003). [CrossRef] [PubMed]
  11. E. Z. Zhang, J. Laufer, and P. C. Beard, "Three dimensional photoacoustic imaging of vascular anatomy in small animals using an optical detection system," Proc SPIE 6437, 643710S (2007).
  12. R. A. Kruger, W. L. Kiser, Jr., D. R. Reinecke, G. A. Kruger, and K. D. Miller, "Thermoacoustic optical molecular imaging of small animals," Molecular Imaging 2, 113-123 (2003). [CrossRef] [PubMed]
  13. L. Li, R. J. Zemp, L. Gina, G. Stoica, and L. V. Wang, "Photoacoustic imaging of lacZ gene expression in vivo,"J. Biomed. Opt. 12, 020504 (2007). [CrossRef] [PubMed]
  14. X. Xie, M.-L. Li, J.-T. Oh, G. Ku, C. Wang, C. Li, S. Similache, G. F. Lungu, G. Stoica, and L. V. Wang, "Photoacoustic molecular imaging of small animals in vivo,"Proc. SPIE 6086608606 (2006). [CrossRef]
  15. X. Wang, Y. Pang, and G. Ku, "Three-dimensional laser-induced photoacoustic tomography of mouse brain with the skin and skull intact," Opt. Lett. 28, 1739-1741 (2003). [CrossRef] [PubMed]
  16. R. A. Kruger, K. K. Kopecky, A. M. Aisen, D. R. Reinecke, G. A. Kruger, and W. L. Kiser, "Thermoacoustic CT with radio waves: a medical imaging paradigm," Radiology 211, 275-278 (1999). [PubMed]
  17. J. J. Niederhauser, M. Jaeger, M. Hejazi, H. Keppner, and M. Frenz, "Transparent ITO coated PVDF transducer for optoacoustic depth profiling," Opt. Commun. 253, 401-406 (2005). [CrossRef]
  18. R. G. Kolkmann, E. Hondebrink, W. Steenbergen, and F. F. De Mul, "In vivo photoacoustic imaging of blood vessels using an extreme-narrow aperture sensor," IEEE J. Sel. Top. Quantum Electron. 9, 343-346 (2003). [CrossRef]
  19. P. Burgholzer, C. Hoffer, G. Paltauf, M. Haltmeier, and O. Scherzer, "Thermoacoustic tomography with integrating and area and line detectors," IEEE Trans. Ultrason. Ferroelectr. Freq. Control 52, 1577-1583 (2005). [CrossRef] [PubMed]
  20. K. Koestli, M. Frenz, H. P. Weber, G. Paltauf, and H. Schmidt-Kloiber, "Optoacoustic tomography: time-gated measurement of pressure distributions and image reconstruction," Appl. Opt. 40, 3800-3809 (2001). [CrossRef]
  21. B. P. Payne, V. Venugopalan, B. B. Mikc, and N. S. Nishioka, "Optoacoustic tomography using time resolved interferometric detection of surface displacement," J. Biomed. Opt. 8, 273-280 (2003). [CrossRef] [PubMed]
  22. J. D. Hamilton and M. O'Donnell, "High frequency ultrasound imaging with optical arrays," IEEE Trans. Ultrason. Ferroelectr. Freq. Control 45, 216-235 (1998). [CrossRef]
  23. V. Wilkens and Ch. Koch, "Optical multilayer detection array for fast ultrasonic field mapping," Opt. Lett. 24, 1026-1028 (1999). [CrossRef]
  24. P. C. Beard and T. N. Mills, "An optical fibre sensor for the detection of laser generated ultrasound in arterial tissues," Proc. SPIE 2331, 112-122 (1994). [CrossRef]
  25. P. C. Beard, F. Perennes, and T. N. Mills, "Transduction mechanisms of the Fabry Perot polymer film sensing concept for wideband ultrasound detection," IEEE Trans. Ultrason. Ferroelectr. Freq. Control 46, 1575-1582 (1999). [CrossRef]
  26. Y. Uno and K. Nakamura, "Pressure sensitivity of a fibre-optic microprobe for high frequency ultrasonic field," Jpn. J. Appl. Phys. , Part 1 38, 3120-3123 (1999). [CrossRef]
  27. S. Askenazi, R. Witte, and M. O'Donnell, "High frequency ultrasound imaging using a Fabry-Perot etalon," Proc. SPIE 5697, 243-250 (2005). [CrossRef]
  28. P. C. Beard, A. Hurrell, and T. N. Mills, "Characterisation of a polymer film optical fibre hydrophone for the measurement of ultrasound fields for use in the range 1-30 MHz: a comparison with PVDF needle and membrane hydrophones," IEEE Trans. Ultrason. Ferroelectr. Freq. Control 47, 256-264 (2000). [CrossRef]
  29. E. Z. Zhang, B. T. Cox, and P. C. Beard, "Ultra high sensitivity, wideband Fabry Perot ultrasound sensors as an alternative to piezoelectric PVDF transducers for biomedical photoacoustic detection," Proc. SPIE 5320, 222-229 (2004). [CrossRef]
  30. P. C. Beard, E. Z. Zhang, and B. T. Cox, "Transparent Fabry-Perot polymer film ultrasound array for backward-mode photoacoustic imaging," Proc. SPIE 5320, 230-237 (2004). [CrossRef]
  31. P. C. Beard, "2D ultrasound receive array using an angle-tuned Fabry Perot polymer film sensor for transducer field characterisation and transmission ultrasound imaging," IEEE Trans. Ultrason. Ferroelectr. Freq. Control 52, 1002-1012 (2005). [CrossRef] [PubMed]
  32. P. C. Beard, "Photoacoustic imaging of blood vessel equivalent phantoms," Proc. SPIE 4618, 54-62 (2002). [CrossRef]
  33. E. Zhang and P. C. Beard, "Broadband ultrasound field mapping system using a wavelength tuned, optically scanned focussed beam to interrogate a Fabry Perot polymer film sensor," IEEE Trans. Ultrason. Ferroelectr. Freq. Control 53, 1330-1338 (2006). [CrossRef] [PubMed]
  34. E. Z. Zhang and P. C. Beard, "2D backward-mode photoacoustic imaging system for NIR (650-1200 nm) spectroscopic biomedical applications," Proc. SPIE 6086, 60860H (2006). [CrossRef]
  35. E. Z. Zhang, J. Laufer, and P. C. Beard, "Three dimensional photoacoustic imaging of vascular anatomy in small animals using an optical detection system," Proc. SPIE 6437, 643710S (2007).
  36. H. Yasuda, Plasma Polymerisation (Academic, 1985).
  37. V. Kozhushko, T. Kholkhlova, A. Zharinov, I. Pelivanov, V. Solomatin, and A. Karabutov, "Focused array transducer for two dimensional optoacoustic tomography," J. Acoust. Soc. Am. 116, 1498-1506 (2004). [CrossRef] [PubMed]
  38. B. T. Cox and P. C. Beard, "Frequency dependent directivity of a planar Fabry Perot polymer film ultrasound sensor," IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54, 394-404 (2007). [CrossRef] [PubMed]
  39. K. Koestli, M. Frenz, H. Bebie, and H. Weber, "Temporal backward projection of optoacoustic pressure transients using Fourier transform methods," Phys. Med. Biol. 46, 1863-1872 (2001). [CrossRef]
  40. K. P. Köstli and P. C. Beard, "Two-dimensional photoacoustic imaging by use of Fourier-transform image reconstruction and a detector with an anisotropic response," Appl. Opt. 42, 1899-1908 (2003). [CrossRef] [PubMed]
  41. British Standard, "Safety of laser products. Equipment classification, requirements and user's guide," BS EN60825-1 (The British Standard Institute, 1994).
  42. T. A. Troy, D. L. Page, and E. M. Sevic-Mucraca, "Optical properties of normal and diseased breast tissues: prognosis for optical mammography," J. Biomed Opt. 1, 342-355 (1996). [CrossRef]
  43. C. R. Simpson, M. Kohl, M. Essenpreis, and M. Cope, "Near-infrared optical properties of ex vivo human skin and subcutaneous tissues measured using the Monte Carlo inversion technique," Phys. Med. Biol. 43, 2465-2478 (1998). [CrossRef] [PubMed]
  44. K. Mazlov, H. F. Zhang, and L. V. Wang, "Portable real-time photoacoustic microscopy," Proc. SPIE 6437, 643727 (2007). [CrossRef]
  45. T. J. Allen and P. C. Beard, "Pulsed NIR laser diode excitation system for biomedical photoacoustic imaging," Opt. Lett. 31, 3462-3464 (2006). [CrossRef] [PubMed]
  46. M. Lamont and P. C. Beard, "2D imaging of ultrasound fields using a CCD array to detect the output of a Fabry Perot polymer film sensor," Electron. Lett. 42, 187-189 (2006). [CrossRef]
  47. B. T. Cox, S. R. Arridge, K. P. Kostli, and P. C. Beard, "2D quantitative photoacoustic image reconstruction of absorption distributions in scattering media using a simple recursive method," Appl. Opt. 45, 1866-1875 (2006). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Multimedia

Multimedia FilesRecommended Software
» Media 1: AVI (656 KB)      QuickTime
» Media 2: AVI (169 KB)      QuickTime
» Media 3: AVI (1154 KB)      QuickTime
» Media 4: AVI (1730 KB)      QuickTime
» Media 5: AVI (975 KB)      QuickTime
» Media 6: AVI (1516 KB)      QuickTime

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited