OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: James C. Wyant
  • Vol. 47, Iss. 4 — Feb. 1, 2008
  • pp: 578–582

Measurement of optical and thermal properties of Hg1− x Cd x Te

Emily M. Heckman, Leonel P. Gonzalez, and Shekhar Guha  »View Author Affiliations

Applied Optics, Vol. 47, Issue 4, pp. 578-582 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (352 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Measurements of optical transmission and several thermal properties of Hg 1 x Cd x Te alloys are reported for a few values of the alloy composition parameter x, which was determined by a microprobe technique. The values of the thermal diffusivity, specific heat, and thermal conductivity were measured using the laser-flash method. These results are reported at four discrete temperatures between 90 and 400   K and compared to those of three well-characterized semiconductor materials: Si, InAs, and InSb.

© 2008 Optical Society of America

OCIS Codes
(160.4670) Materials : Optical materials
(160.6840) Materials : Thermo-optical materials

ToC Category:

Original Manuscript: August 16, 2007
Revised Manuscript: October 12, 2007
Manuscript Accepted: November 14, 2007
Published: January 25, 2008

Emily M. Heckman, Leonel P. Gonzalez, and Shekhar Guha, "Measurement of optical and thermal properties of Hg1−xCdxTe," Appl. Opt. 47, 578-582 (2008)

Sort:  Year  |  Journal  |  Reset  


  1. H. Maleki and L. R. Holland, "Thermal properties of HgCdTe," in Properties of Narrow Gap Cadmium-Based Compounds, P. Capper, ed. (INSPEC, 1994), pp. 48-54.
  2. G. L. Hansen, J. L. Schmit, and T. N. Casselman, "Energy gap versus alloy composition and temperature in Hg1−xCdxTe," J. Appl. Phys. 53, 7099-7101 (1982). [CrossRef]
  3. See, for example, J. Goldstein, D. Newbury, D. Joy, C. Lyman, P. Echlin, E. Lifshin, L. C. Sawyer, and J. R. Michael, Scanning Electron Microscopy and X-ray Microanalysis, 3rd ed. (Springer, 2003).
  4. W. J. Parker, R. J. Jenkins, C. P. Butler, and G. L. Abbott, "Flash method of determining thermal diffusivity, heat capacity, and thermal conductivity," J. Appl. Phys. 32, 1679-1684 (1961). [CrossRef]
  5. R. D. Cowan, "Pulse method of measuring thermal diffusivity at high temperatures," J. Appl. Phys. 34, 926-927 (1963). [CrossRef]
  6. L. M. Clark III and R. E. Taylor, "Radiation loss in the flash method for thermal diffusivity," J. Appl. Phys. 46, 714-719 (1975). [CrossRef]
  7. H. Mehling, G. Hautzinger, O. Nilsson, J. Fricke, R. Hofmann, and O. Hahn, "Thermal diffusivity of semitransparent materials determined by the laser-flash method applying a new analytical model," Int. J. Thermophys. 19, 941-949 (1998). [CrossRef]
  8. R. C. Campbell and S. E. Smith, "Flash diffusivity method: a survey of capabilities," Electron. Cooling 8, 34-40 (2002).
  9. Test Method E1461-0, "Standard test method for thermal diffusivity by the flash method," in Annual Book of ASTM Standards 14.02 (American Society for Testing Materials, 2001), pp. 1-13. [PubMed]
  10. Netzsch Instruments, Inc., Burlingon, Mass. 01803, "Thermal diffusivity, specific heat and thermal conductivity of semiconductors," Report 621001116 (Netzsch Instruments, 2007).
  11. V. V. Kosarev, P. V. Tamarin, and S. S. Shalyt, "Thermal conductivity of indium antimonide at low temperatures," Phys. Status Solidi B 44, 525-534 (1971). [CrossRef]
  12. G. Busch and E. F. Steigmeier, "Wärmeleitfähigkeit, elektrische Leitfähigkeit, Hall-Effekt und Thermospannung von InSb," Helv. Phys. Acta. 34, 1-28 (1961).
  13. M. G. Holland, "Phonon scattering in semiconductors from thermal conductivity studies," Phys. Rev. 134, A471-A480 (1964). [CrossRef]
  14. P. V. Tamarin and S. S. Shalyt, "Thermal conductivity and thermoelectric power of indium arsenide at low temperatures," Sov. Phys. Semicond. 5, 1097-1098 (1971).
  15. E. F. Steigmeier and I. Kudman, "Thermal conductivity of III-V compounds at high temperatures," Phys. Rev. 132, 508-512 (1963). [CrossRef]
  16. R. Bowers, R. W. Ure, Jr., J. E. Bauerle, and A. J. Cornish, "InAs and InSb as thermoelectric materials," J. Appl. Phys. 30, 930-934 (1959). [CrossRef]
  17. B. G. Streetman, Solid State Electronic Devices, 3rd ed. (Prentice Hall, 1990).
  18. C. J. Glassbrenner and G. A. Slack, "Thermal conductivity of silicon and germanium from 3K to the melting point," Phys. Rev. 134, A1058-A1069 (1964). [CrossRef]
  19. R. G. Morris and J. G. Hust, "Thermal conductivity measurements of silicon from 30° to 425 °C," Phys. Rev. 124, 1426-1430 (1961). [CrossRef]
  20. H. R. Shanks, P. D. Maycock, P. H. Sidles, and G. C. Danielson, "Thermal conductivity of silicon from 300 to 1400 K," Phys. Rev. 130, 1743-1748 (1963). [CrossRef]
  21. D. Long and J. L. Schmit, "Mercury-cadmium telluride and closely related alloys," in Semiconductors and Semimetals, R. K. Willardson and A. C. Beer, eds. (Academic, 1970), Vol. 5, pp. 175-255.
  22. T. C. Harris, "Properties of Hg-chalcogenides," in Physics & Chemistry of II-VI Compounds, M. Aven and J. S. Prener, eds. (North-Holland, 1957).
  23. P. Klocek, Handbook of Infrared Optical Materials (Dekker, 1991).
  24. J. Zhao, X. Li, H. Liu, R. Jiang, Z. Liu, Z. Hu, H. Gong, and J. Fang, "Damage threshold of HgCdTe induced by continuous-wave CO2 laser," Appl. Phys. Lett. 74, 1081-1083 (1998). [CrossRef]
  25. A. Garg, A. Kapoor, K. N. Tripathi, and S. K. Bansal, "Laser induced damage studies in mercury cadmium telluride," Opt. Laser Technol. 39, 1319-1327 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited