OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: James C. Wyant
  • Vol. 47, Iss. 4 — Feb. 1, 2008
  • pp: A21–A31

Information processing with longitudinal spectral decomposition of ultrafast pulses

Robert E. Saperstein and Yeshaiahu Fainman  »View Author Affiliations

Applied Optics, Vol. 47, Issue 4, pp. A21-A31 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (1792 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We describe what we believe to be novel methods for waveform synthesis and detection relying on longitudinal spectral decomposition of subpicosecond optical pulses. Optical processing is performed in both all-fiber and mixed fiber–free-space systems. Demonstrated applications include ultrafast optical waveform synthesis, microwave spectrum analysis, and high-speed electrical arbitrary waveform generation. The techniques have the potential for time–bandwidth products of 10 4 due to exclusive reliance on time-domain processing. We introduce the principles of operation and subsequently support these with results from our experimental systems. Both theory and experiments suggest third-order dispersion as the principle limitation to large time–bandwidth products. Chirped-fiber Bragg gratings offer a route to increasing the number of resolvable spots for use in high-speed signal processing applications.

© 2008 Optical Society of America

OCIS Codes
(320.1590) Ultrafast optics : Chirping
(320.5540) Ultrafast optics : Pulse shaping

Original Manuscript: April 23, 2007
Revised Manuscript: August 9, 2007
Manuscript Accepted: August 10, 2007
Published: September 27, 2007

Robert E. Saperstein and Yeshaiahu Fainman, "Information processing with longitudinal spectral decomposition of ultrafast pulses," Appl. Opt. 47, A21-A31 (2008)

Sort:  Year  |  Journal  |  Reset  


  1. A. M. Weiner, J. P. Heritage, and E. M. Kirschner, "High-resolution femtosecond pulse shaping," J. Opt. Soc. Am. B 5, 1563-1572 (1988). [CrossRef]
  2. A. M. Weiner, D. E. Leaird, J. S. Patel, and J. R. Wullert II, "Programmable shaping of femtosecond optical pulses by use of 128-element liquid crystal phase modulator," J. Quantum Electron. 28, 908-920 (1992). [CrossRef]
  3. M. A. Dugan, J. X. Tull, and W. S. Warren, "High-resolution acousto-optic shaping of unamplified and amplified femtosecond laser pulses," J. Opt. Soc. Am. B 14, 2348-2358 (1997). [CrossRef]
  4. T. Kurokawa, H. Tsuda, K. Okamoto, K. Naganuma, H. Takenouchi, Y. Inoue, and M. Ishii, "Time-space-conversion optical signal processing using arrayed-waveguide grating," Electron. Lett. 33, 1890-1891 (1997). [CrossRef]
  5. P.-C. Sun, Y. Mazurenko, and Y. Fainman, "Femtosecond pulse imaging: ultrafast optical oscilloscope," J. Opt. Soc. Am. A 14, 1159-1170 (1997). [CrossRef]
  6. D. M. Marom, D. Panasenko, P.-C. Sun, and Y. Fainman, "Spatial-temporal wave mixing for space-to-time conversion," Opt. Lett. 24, 563-565 (1999). [CrossRef]
  7. D. M. Marom, D. Panasenko, R. Rokitski, P.-C. Sun, and Y. Fainman, "Time reversal of ultrafast waveforms by wave mixing of spectrally decomposed waves," Opt. Lett. 25, 132-134 (2000). [CrossRef]
  8. M. M. Wefers and K. A. Nelson, "Space-time profiles of shaped ultrafast optical waveforms," IEEE J. Quantum Electron. 32, 161-172 (1996). [CrossRef]
  9. D. E. Leaird, A. M. Weiner, S. Kamei, M. Ishii, A. Sugita, and K. Okamoto, "Generation of flat-topped 500-GHz pulse bursts using loss engineered arrayed waveguide gratings," IEEE Photon. Technol. Lett. 14, 816-818 (2002). [CrossRef]
  10. A. Papoulis, "Pulse compression, fiber communications, and diffraction: a unified approach," J. Opt. Soc. Am. A 11, 3-13 (1994). [CrossRef]
  11. Y. C. Tong, L. Y. Chan, and H. K. Tsang, "Fiber dispersion or pulse spectrum measurement using a sampling oscilloscope," Electron. Lett. 33, 983-985 (1997). [CrossRef]
  12. W. S. Warren, H. Rabitz, and M. Dahleh, "Coherent control of quantum dynamics: the dream is alive," Science 259, 1581-1589 (1993). [CrossRef] [PubMed]
  13. J. A. Salehi, A. M. Weiner, and J. P. Heritage, "Coherent ultrashort light pulse code-division multiple-access communication systems," J. Lightwave Technol. 8, 478-491 (1990). [CrossRef]
  14. A. M. Weiner and J. P. Heritage, "Optical systems and methods based upon temporal stretching, modulation, and recompression of ultrashort pulses," U.S. patent 4,928,316 (22 May 1990).
  15. M. Haner and W. S. Warren, "Synthesis of crafted optical pulses by time domain modulation in a fiber-grating compressor," Appl. Phys. Lett. 52, 1548-1550 (1988). [CrossRef]
  16. R. E. Saperstein, N. Alic, D. Panasenko, R. Rokitski, and Y. Fainman, "Time-domain waveform processing by chromatic dispersion for temporal shaping of optical pulses," J. Opt. Soc. Am. B 22, 2427-2436 (2005). [CrossRef]
  17. Y. Takagi, T. Kobayashi, K. Yoshihara, and S. Imamura, "Multiple- and single-shot autocorrelator based on two-photon conductivity in semiconductors," Opt. Lett. 17, 658-660 (1992). [CrossRef] [PubMed]
  18. R. E. Saperstein, D. Panasenko, and Y. Fainman, "Demonstration of a microwave spectrum analyzer using time-domain optical processing in fiber," Opt. Lett. 29, 501-503 (2004). [CrossRef] [PubMed]
  19. H. Zmuda and E. N. Toughlian, Photonic Aspects of Modern Radar (Artech House, 1994).
  20. B. B. Hu and M. C. Nuss, "Imaging with terahertz waves," Opt. Lett. 20, 1716-1718 (1995). [CrossRef] [PubMed]
  21. V. Lavielle, I. Lorgeré, J.-L. Le Gouët, S. Tonda, and D. Dolfi, "Wideband versatile radio-frequency spectrum analyzer," Opt. Lett. 28, 384-386 (2003). [CrossRef] [PubMed]
  22. R. E. Saperstein, X. B. Xie, P. K. L. Yu, and Y. Fainman, "Demonstration of a microwave spectrum analyzer based on time domain processing of ultrafast pulses," in Conference on Lasers and Electro-Optics (CLEO), Vol. 96 of OSA Trends in Optics and Photonics Series, (Optical Society of America, 2005), paper CTuAA4.
  23. D. Panasenko and Y. Fainman, "Interferometric correlation of infrared femtosecond pulses with two-photon conductivity in a silicon CCD," Appl. Opt. 41, 3748-3752 (2002). [CrossRef] [PubMed]
  24. A. S. Weling, B. B. Hu, N. M. Froberg, and D. H. Auston, "Generation of tunable narrow-band THz radiation from large aperture photoconducting antennas," Appl. Phys. Lett. 64, 137-139 (1994). [CrossRef]
  25. M. Ghavami, L. B. Michael, and R. Kohno, Ultra-wideband Signals and Systems in Communication Engineering (Wiley, 2004).
  26. J. U. Kang, M. Y. Frankel, and R. D. Esman, "Demonstration of microwave frequency shifting by use of a highly chirped mode-locked fiber laser," Opt. Lett. 23, 1188-1190 (1998). [CrossRef]
  27. J. Chou, Y. Han, and B. Jalali, "Adaptive RF-photonic arbitrary waveform generator," IEEE Photon. Technol. Lett. 15, 581-583 (2003). [CrossRef]
  28. J. Azaña, N. K. Berger, B. Levit, V. Smulakovsky, and B. Fischer, "Frequency shifting of microwave signals by use of a general temporal self-imaging (Talbot) effect in optical fibers," Opt. Lett. 29, 2849-2851 (2004). [CrossRef]
  29. J. D. McKinney, D. E. Leaird, and A. M. Weiner, "Millimeter-wave arbitrary waveform generation with a direct space-to-time pulse shaper," Opt. Lett. 27, 1345-1347 (2002). [CrossRef]
  30. S. Xiao, J. D. McKinney, and A. M. Weiner, "Photonic microwave arbitrary waveform generation using a virtually imaged phased-array (VIPA) direct space-to-time pulse shaper," IEEE Photon. Technol. Lett. 16, 1936-1938 (2004). [CrossRef]
  31. J. D. McKinney, I.-S. Lin, and A. M. Weiner, "Shaping the power spectrum of ultra-wideband radio-frequency signals," IEEE Trans. Microwave Theory Tech. 54, 4247-4255 (2006). [CrossRef]
  32. T. Yilmaz, C. M. DePriest, T. Turpin, J. H. Abeles, and P. J. Delfyett, "Toward a photonic arbitrary waveform generator using a modelocked external cavity semiconductor laser," IEEE Photon. Technol. Lett. 14, 1608-1610 (2002). [CrossRef]
  33. R. E. Saperstein, N. Alic, R. Rokitski, and Y. Fainman, "High-speed, electronic arbitrary waveform generation using time-domain processing of ultrashort optical pulses," in Summer Topical Meetings 2005 (IEEE, 2005), paper WC2.4.
  34. J. van Howe and C. Xu, "Ultrafast optical delay line by use of a time-prism pair," Opt. Lett. 30, 99-101 (2005). [CrossRef] [PubMed]
  35. J. Sharping, Y. Okawachi, J. van Howe, C. Xu, Y. Wang, A. Willner, and A. Gaeta, "All-optical, wavelength and bandwidth preserving, pulse delay based on parametric wavelength conversion and dispersion," Opt. Express 13, 7872-7877 (2005). [CrossRef] [PubMed]
  36. J. Ren, N. Alic, E. Myslivets, R. E. Saperstein, C. J. McKinstrie, R. M. Jopson, A. H. Gnauck, P. A. Andrekson, and S. Radic, "12.47 ns continuously-tunable two-pump parametric delay," in Proceedings of the European Conference on Optical Communication (SEE, 2006), postdeadline paper Th4.4.3.
  37. N. Alic and S. Radic, Electrical and Computer Engineering Department, University of California, San Diego, 9500 Gilman Drive, Mail Stop 0407, La Jolla, Calif. 92093, USA, are preparing a manuscript to be called "Optical delay elements based on wavelength conversion."
  38. Advanced Optical Solutions, www.aos-fiber.com.
  39. Proximion Fiber Systems AB, http://www.proximion.com/.
  40. P. Petropoulos, M. Ibsen, A. D. Ellis, and D. J. Richardson, "Rectangular pulse generation based on pulse reshaping using a superstructured fiber Bragg grating," J. Lightwave Technol. 19, 746-752 (2001). [CrossRef]
  41. S. Longhi, M. Marano, P. Laporta, O. Svelto, and M. Belmonte, "Propagation, manipulation, and control of picosecond optical pulses at 1.5 m in fiber Bragg gratings," J. Opt. Soc. Am. B 19, 2742-2757 (2002). [CrossRef]
  42. J. Azaña and L. R. Chen, "Synthesis of temporal optical waveforms by fiber Bragg gratings: a new approach based on space-to-frequency-to-time mapping," J. Opt. Soc. Am. B 19, 2758-2769 (2002). [CrossRef]
  43. X. Wang, K. Matsushima, K. Kitayama, A. Nishiki, N. Wada, and F. Kubota, "High-performance optical code generation and recognition by use of a 511-chip, 640-Gchip/s phase-shifted superstructured fiber Bragg grating," Opt. Lett. 30, 355-357 (2005). [CrossRef] [PubMed]
  44. P. C. Chou, and H. A. Haus, and J. F. Brennan III, "Reconfigurable time-domain spectral shaping of an optical pulse stretched by a fiber Bragg grating," Opt. Lett. 25, 524-526 (2000). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited