OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: James C. Wyant
  • Vol. 47, Iss. 5 — Feb. 10, 2008
  • pp: 632–638

Integrated Mach–Zehnder-based 2 × 2 all-optical switch using nonlinear two-mode interference waveguide

Rahim Ghayour, Ahmad Naseri Taheri, and Mohammad Taghi Fathi  »View Author Affiliations

Applied Optics, Vol. 47, Issue 5, pp. 632-638 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (597 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The Mach–Zehnder interferometer (MZI) is a common structure for integrated all-optical switches. We proposed and designed an all-optical 2 × 2 switch that is based on the MZI, multimode interference, and a nonlinear two-mode interference waveguide. The beam propagation method is used to simulate and analyze the device. The results show that the switching action is done properly.

© 2008 Optical Society of America

OCIS Codes
(060.1810) Fiber optics and optical communications : Buffers, couplers, routers, switches, and multiplexers
(130.0130) Integrated optics : Integrated optics
(130.3120) Integrated optics : Integrated optics devices
(190.3270) Nonlinear optics : Kerr effect
(230.1150) Optical devices : All-optical devices
(230.4320) Optical devices : Nonlinear optical devices

ToC Category:
Optical Devices

Original Manuscript: July 3, 2007
Revised Manuscript: November 11, 2007
Manuscript Accepted: December 6, 2007
Published: February 1, 2008

Rahim Ghayour, Ahmad Naseri Taheri, and Mohammad Taghi Fathi, "Integrated Mach-Zehnder-based 2 × 2 all-optical switch using nonlinear two-mode interference waveguide," Appl. Opt. 47, 632-638 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. E. Sharping, M. Fiorentino, P. Kumar, and R. S. Windeler, "All-optical switching based on cross-phase modulation in microstructure fiber," IEEE Photon. Technol. Lett. 14, 77-79 (2002). [CrossRef]
  2. I. K. Hwang, M. K. Kim, and Y. H. Lee, "All-optical switching in InGaAsP-InP photonic crystal resonator coupled with microfiber," IEEE Photon. Technol. Lett. 19, 1535-1537 (2007). [CrossRef]
  3. E. Tangdiongga, Y. Liu, H. de Waardt, G. D. Khoe, A. M. J. Koonen, and H. J. S. Dorren, "All-optical demultiplexing of 640 to 40 Gbits/s using filtered chirp of a semiconductor optical amplifier," Opt. Lett. 32, 835-837 (2007). [CrossRef] [PubMed]
  4. A. Bananej and C. Li, "Controllable all-optical switch using an EDF-ring coupled M-Z interferometer," IEEE Photon. Technol. Lett. 16, 2102-2104 (2004). [CrossRef]
  5. G. Berrettini, G. Meloni, A. Bogoni, and L. Poti, "All-optical 2 × 2 switch based on Kerr effect in highly nonlinear fiber for ultrafast applications," IEEE Photon. Technol. Lett. 18, 2439-2441 (2006). [CrossRef]
  6. Y. H. Kim, U. C. Paek, and W. T. Han, "All-optical 2 × 2 switching with two independent Yb3+-doped nonlinear optical fibers with a long-period fiber grating pair," Appl. Opt. 44, 3051-3057 (2005). [CrossRef] [PubMed]
  7. Y. Tian, X. Xiao, S. Gao, and C. Yang, "All-optical switch based on two-pump four-wave mixing in fibers without a frequency shift," Appl. Opt. 46, 5588-5592 (2007). [CrossRef] [PubMed]
  8. J. H. Lee, J. Y. Wang, C. C. Yang, and Y. W. Kiang, "All-optical switching behaviors in an all-semiconductor nonlinear loop device," J. Opt. Soc. Am. B 18, 1334-1341 (2001). [CrossRef]
  9. T. Simoyama, S. Sekiguchi, H. Yoshida, J. Kasai, T. Mozume, and H. Ishikawa, "Absorption dynamics in all-optical switch based on intersubband transition in InGaAs-AlAs-AlAsSb coupled quantum wells," IEEE Photon. Technol. Lett. 19, 604-606 (2007). [CrossRef]
  10. J. Leuthold, P. A. Besse, E. Gamper, M. Dulk, W. Vogt, and H. Melchior, "Cascadable MZI all-optical switch with separate ports for data- and control-signals," in Proceedings of the 24th European Conference on Optical Communication (IEEE, 1998), pp. 463-464.
  11. A. Rostami, "Low threshold and tunable all-optical switch using-two-photon absorption in array of nonlinear ring resonators coupled to MZI," Microelectron. J. 37, 976-981 (2006). [CrossRef]
  12. J. Li, L. Li, L. Jin, and C. Li, "All-optical switch and limiter based on nonlinear polarization in Mach-Zehnder interferometer coupled with a polarization-maintaining fiber-ring resonator," Opt. Commun. 260, 318-323 (2006). [CrossRef]
  13. A. Teixeira, T. Silveira, P. Andre, R. Nogueira, G. Tosi-Bellefi, P. Monteiro, and J. Da Rocha, "All-optical switching with SOA based devices," in Proceedings of the International Conference on Advanced Optoelectronics and Lasers (CAOL) (IEEE, 2005), pp. 52-55. [CrossRef]
  14. Y. Fedoryshyn, P. Strasser, P. Ma, F. Robin, and H. Jäckel, "Optical waveguide structure for an all-optical switch based on intersubband transitions in InGaAs/AlAsSb quantum wells," Opt. Lett. 32, 2680-2682 (2007). [CrossRef] [PubMed]
  15. J. Leuthold, P. A. Besse, J. Eckner, E. Gamper, M. Dulk, and H. Melchior, "All-optical space switches with gain and principally ideal extinction ratios," IEEE J. Quantum Electron. 34, 622-633 (1998). [CrossRef]
  16. W. D. Oosterlinck, J. Buron, F. Öhman, G. Morthier, and R. Baets, "All-optical flip-flop based on an SOA/DFB-laser diode optical feedback scheme," IEEE Photon. Technol. Lett. 19, 489-491 (2007). [CrossRef]
  17. J. Leuthold, P. Besse, E. Gamper, M. Dulk, S. Fischer, G. Guekos, and H. Melchior, "All-optical Mach-Zehnder interferometer wavelength converters and switches with integrated data- and control-signal separation scheme," J. Lightwave Technol. 17, 1056-1066 (1999). [CrossRef]
  18. K. Morito, J. Leuthold, and H. Melchior, "Dynamic analysis of MZI-SOA all-optical switches for balanced switching," in Proceedings of the 23rd European Conference on Optical Communications (IEEE, 1997), pp. 81-84.
  19. T. Yabu, M. Geshiro, T. Kitamura, K. Nishida, and S. Sawa, "All-optical logic gates containing a two-mode nonlinear waveguide," IEEE J. Quantum Electron. 38, 37-46 (2002). [CrossRef]
  20. W. Samir, C. Pask, and S. J. Garth, "Signal switching by a control beam in a nonlinear coupler," J. Opt. Soc. Am. B 11, 2193-2205 (1994). [CrossRef]
  21. T. Fujisawa and M. Koshiba, "All-optical logic gates based on nonlinear slot-waveguide couplers," J. Opt. Soc. Am. B 23, 684-691 (2006). [CrossRef]
  22. L. B. Soldano and E. C. M. Pennings, "Optical multi-mode interference devices based on self-imaging: principles and applications," J. Lightwave Technol. 13, 615-626 (1995). [CrossRef]
  23. L. B. Soldano and F. B. Veerman, "Planar monomode optical couplers based on multimode interference effects," J. Lightwave Technol. 10, 1843-1850 (1992). [CrossRef]
  24. R. W. Boyd, Nonlinear Optics (Academic, 2003).
  25. F. Sun, J. Yu, and S. Chen, "A 2 × 2 optical switch based on plasma dispersion effect in silicon-on-insulator," Opt. Commun. 262, 164-169 (2006). [CrossRef]
  26. Y. Ucno, M. Takahashi, S. Nakamura, K. Suzuki, T. Shimizu, A. Furukawa, T. Tamanuki, K. Mori, S. Ac, T. Sasaki, and K. Tajima, "Control scheme for optimizing the interferometer phase bias in a symmetric-Mach-Zehnder-type all-optical," IEEE Photon. Technol. Lett. 14, 1692-1694 (2002). [CrossRef]
  27. A. Zakery and M. Hatami, "Nonlinear optical properties of pulsed-laser deposited GeAsSe films and simulation of a nonlinear directional coupler switch," J. Opt. Soc. Am. B 22, 591-597 (2005). [CrossRef]
  28. D. N. Nikogosyan, Nonlinear Optical Crystals: A Complete Survey (Springer, 2005).
  29. B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (Wiley, 2001), pp. 249-251.
  30. P. A. Besse, M. Bachmann, H. Melchior, L. B. Soldano, and M. K. Smit, "Optical bandwidth and fabrication tolerances of multimode interference couplers," J. Lightwave Technol. 12, 1004-1009 (1994). [CrossRef]
  31. Z. Jin and G. D. Peng, "Optimal design of N × N silica multimode interference couplers--an improved approach," Opt. Commun. 241, 299-308 (2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited