OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: James C. Wyant
  • Vol. 47, Iss. 5 — Feb. 10, 2008
  • pp: 687–693

Inherent homogenous media dispersion compensation in frequency domain optical coherence tomography by accurate k -sampling

Alexandre R. Tumlinson, Bernd Hofer, Amy M. Winkler, Boris Považay, Wolfgang Drexler, and Jennifer K. Barton  »View Author Affiliations


Applied Optics, Vol. 47, Issue 5, pp. 687-693 (2008)
http://dx.doi.org/10.1364/AO.47.000687


View Full Text Article

Enhanced HTML    Acrobat PDF (1252 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Depth dependent broadening of the axial point spread function due to dispersion in the imaged media, and algorithms for postprocess correction, have been previously described for both time domain and frequency domain optical coherence tomography. We show that homogeneous media dispersion artifacts disappear when frequency domain samples are acquired with uniform spacing in circular wavenumber, as opposed to uniform sampling in optical frequency. We further explicate the source of this point spread broadening and simulate its magnitude in aqueous media. We experimentally demonstrate media dispersion compensation in high dispersion glass by choosing sample frequencies at equal intervals of media index of refraction divided by vacuum wavelength, and we recover unbroadened reflections without an additional postprocessing step.

© 2008 Optical Society of America

OCIS Codes
(120.3180) Instrumentation, measurement, and metrology : Interferometry
(170.4500) Medical optics and biotechnology : Optical coherence tomography
(260.2030) Physical optics : Dispersion
(070.2025) Fourier optics and signal processing : Discrete optical signal processing

ToC Category:
Instrumentation, Measurement, and Metrology

History
Original Manuscript: July 16, 2007
Manuscript Accepted: October 31, 2007
Published: February 7, 2008

Virtual Issues
Vol. 3, Iss. 3 Virtual Journal for Biomedical Optics

Citation
Alexandre R. Tumlinson, Bernd Hofer, Amy M. Winkler, Boris Považay, Wolfgang Drexler, and Jennifer K. Barton, "Inherent homogenous media dispersion compensation in frequency domain optical coherence tomography by accurate k-sampling," Appl. Opt. 47, 687-693 (2008)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-47-5-687


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. C. K. Hitzenberger, A. Baumgartner, W. Drexler, and A. F. Fercher, "Dispersion effects in partial coherence interferometry: implications for intraocular ranging," J. Biomed. Opt. 4, 144-151 (1999). [CrossRef]
  2. Y. M. Wang, J. S. Nelson, Z. P. Chen, B. J. Reiser, R. S. Chuck, and R. S. Windeler, "Optimal wavelength for ultrahigh-resolution optical coherence tomography," Opt. Express 11, 1411-1417 (2003). [CrossRef] [PubMed]
  3. T. R. Hillman and D. D. Sampson, "The effect of water dispersion and absorption on axial resolution in ultrahigh-resolution optical coherence tomography," Opt. Express 13, 1860-1874 (2005). [CrossRef] [PubMed]
  4. W. Drexler, U. Morgner, R. K. Ghanta, F. X. Kartner, J. S. Schuman, and J. G. Fujimoto, "Ultrahigh-resolution ophthalmic optical coherence tomography," Nature Med. 7, 502-507 (2001). [CrossRef] [PubMed]
  5. A. V. Zvyagin, E. D. J. Smith, and D. D. Sampson, "Delay and dispersion characteristics of a frequency-domain optical delay line for scanning interferometry," J. Opt. Soc. Am. A 20, 333-341 (2003). [CrossRef]
  6. W. K. Niblack, J. O. Schenk, B. Liu, and M. E. Brezinski, "Dispersion in a grating-based optical delay line for optical coherence tomography," Appl. Opt. 42, 4115-4118 (2003). [CrossRef] [PubMed]
  7. A. R. Tumlinson, J. K. Barton, B. Považay, H. Sattman, A. Unterhuber, R. A. Leitgeb, and W. Drexler, "Endoscope-tip interferometer for ultrahigh resolution frequency domain optical coherence tomography in mouse colon," Opt. Express 14, 1878-1887 (2006). [CrossRef] [PubMed]
  8. E. D. J. Smith, A. V. Zvyagin, and D. D. Sampson, "Real-time dispersion compensation in scanning interferometry," Opt. Lett. 27, 1998-2000 (2002). [CrossRef]
  9. D. L. Marks, A. L. Oldenburg, J. J. Reynolds, and S. A. Boppart, "Autofocus algorithm for dispersion correction in optical coherence tomography," Appl. Opt. 42, 3038-3046 (2003). [CrossRef] [PubMed]
  10. D. L. Marks, A. L. Oldenburg, J. J. Reynolds, and S. A. Boppart, "Digital algorithm for dispersion correction in optical coherence tomography for homogeneous and stratified media," Appl. Opt. 42, 204-217 (2003). [CrossRef] [PubMed]
  11. M. Wojtkowski, V. J. Srinivasan, T. H. Ko, J. G. Fujimoto, A. Kowalczyk, and J. S. Duker, "Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation," Opt. Express 12, 2404-2422 (2004). [CrossRef] [PubMed]
  12. D. Choi, H. Hiko-Oka, T. Amano, H. Furukawa, F. Kano, M. Nakanishi, K. Shimizu, and K. Ohbayashi, "Numerical compensation of dispersion mismatch in discretely swept optical-frequency-domain-reffectometry optical coherence tomography," Jpn. J. Appl. Phys. Part 1 45, 6022-6027 (2006). [CrossRef]
  13. Z. G. Wang, Z. J. Yuan, H. Y. Wang, and Y. T. Pan, "Increasing the imaging depth of spectral-domain OCT by using interpixel shift technique," Opt. Express 14, 7014-7023 (2006). [CrossRef] [PubMed]
  14. M. A. Choma, K. Hsu, and J. A. Izatt, "Swept source optical coherence tomography using an all-fiber 1300-nm ring laser source," J. Biomed. Opt. 10, 044009 (2005). [CrossRef]
  15. M. V. Sarunic, M. A. Choma, C. H. Yang, and J. A. Izatt, "Instantaneous complex conjugate resolved spectral domain and swept-source OCT using 3 × 3 fiber couplers," Opt. Express 13, 957-967 (2005). [CrossRef] [PubMed]
  16. B. J. Vakoc, S. H. Yun, G. J. Tearney, and B. E. Bouma, "Elimination of depth degeneracy in optical frequency-domain imaging through polarization-based optical demodulation," Opt. Lett. 31, 362-364 (2006). [CrossRef] [PubMed]
  17. R. Huber, M. Wojtkowski, K. Taira, J. G. Fujimoto, and K. Hsu, "Amplified, frequency swept lasers for frequency domain reflectometry and OCT imaging: design and scaling principles," Opt. Express 13, 3513-3528 (2005). [CrossRef] [PubMed]
  18. M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, "In vivo human retinal imaging by Fourier domain optical coherence tomography," J. Biomed. Opt. 7, 457-463 (2002). [CrossRef] [PubMed]
  19. T. S. Ralston, D. L. Marks, P. S. Carney, and S. A. Boppart, "Inverse scattering for optical coherence tomography," J. Opt. Soc. Am. A 23, 1027-1037 (2006). [CrossRef]
  20. R. A. Leitgeb, W. Drexler, A. Unterhuber, B. Hermann, T. Bajraszewski, T. Le, A. Stingl, and A. F. Fercher, "Ultrahigh resolution Fourier domain optical coherence tomography," Opt. Express 12, 2156-2165 (2004). [CrossRef] [PubMed]
  21. R. Tripathi, N. Nassif, J. S. Nelson, B. H. Park, and J. F. de Boer, "Spectral shaping for non-Gaussian source spectra in optical coherence tomography," Opt. Lett. 27, 406-408 (2002). [CrossRef]
  22. A. G. Van Engen, S. A. Diddams, and T. S. Clement, "Dispersion measurements of water with white-light interferometry," Appl. Opt. 37, 5679-5686 (1998). [CrossRef]
  23. C. Dorrer, N. Belabas, J. P. Likforman, and M. Joffre, "Spectral resolution and sampling issues in Fourier-transform spectral interferometry," J. Opt. Soc. Am. B 17, 1795-1802 (2000). [CrossRef]
  24. A. Kohlhaas, C. Fromchen, and E. Brinkmeyer, "High-resolution ocdr for testing integrated-optical wave-guides-dispersion-corrupted experimental-data corrected by a numerical algorithm," J. Lightwave Technol. 9, 1493-1502 (1991). [CrossRef]
  25. E. Brinkmeyer, A. Kohlhaas, and C. Fromchen, "Efficient algorithm for nonequidistant interpolation of sampled data," Electron. Lett. 28, 693-695 (1992). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited