OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: James C. Wyant
  • Vol. 47, Iss. 5 — Feb. 10, 2008
  • pp: 694–703

Diffuse-light two-dimensional line-of-sight attenuation for soot concentration measurements

Kevin A. Thomson, Matthew R. Johnson, David R. Snelling, and Gregory J. Smallwood  »View Author Affiliations


Applied Optics, Vol. 47, Issue 5, pp. 694-703 (2008)
http://dx.doi.org/10.1364/AO.47.000694


View Full Text Article

Enhanced HTML    Acrobat PDF (1939 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A technique of diffuse-light two-dimensional line-of-sight attenuation (diffuse 2D-LOSA) is described and demonstrated that achieves very high levels of sensitivity in transmissivity measurements (optical thicknesses down to 0.001) while effectively mitigating interferences due to beam steering. An optical system is described in which an arc lamp coupled with an integrating sphere is used as a source of diffuse light that is imaged to the center of the particulate laden medium. The center of the medium is then imaged onto a CCD detector with 1:1 magnification. Comparative measurements with collimated 2D-LOSA in nonpremixed flames demonstrate the accuracy and improved optical noise rejection of the technique. Tests in weakly sooting, nonpremixed methane–air flames, and in high pressure methane–air flames, reveal the excellent sensitivity of diffuse 2D-LOSA, which is primarily limited by the shot noise of the lamp and CCD detector.

© 2008 Optical Society of America

OCIS Codes
(120.1740) Instrumentation, measurement, and metrology : Combustion diagnostics
(120.3620) Instrumentation, measurement, and metrology : Lens system design
(120.4640) Instrumentation, measurement, and metrology : Optical instruments
(280.2470) Remote sensing and sensors : Flames
(110.0113) Imaging systems : Imaging through turbid media
(110.6955) Imaging systems : Tomographic imaging

ToC Category:
Instrumentation, Measurement, and Metrology

History
Original Manuscript: October 31, 2007
Manuscript Accepted: November 21, 2007
Published: February 8, 2008

Citation
Kevin A. Thomson, Matthew R. Johnson, David R. Snelling, and Gregory J. Smallwood, "Diffuse-light two-dimensional line-of-sight attenuation for soot concentration measurements," Appl. Opt. 47, 694-703 (2008)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-47-5-694


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. U.S. Environmental Protection Agency, "Air quality criteria for particulate matter (October 2004)," EPA 600/P-99/002aF-bF, (U.S. Environmental Protection Agency, 2004).
  2. S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K. B. Averyt, M. Tignor, and H. L. Miller, eds., in Climate Change 2007: The Physical Science Basis, contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (Cambridge U. Press, 2007).
  3. B. S. Haynes and H. Gg. Wagner, "Soot formation," Prog. Energ. Combust. Sci. 7, 229-273 (1981). [CrossRef]
  4. H. Bockhorn, "Ultrafine particles from combustion sources: approaches to what we want to know," Philos. Trans. R. Soc. London , Ser. A 358, 2659-2672 (2000). [CrossRef]
  5. P. A. Vlasov and J. Warnatz, "Detailed kinetic modeling of soot formation in hydrocarbon pyrolysis behind shock waves," Proc. Combust. Inst. 29, 2335-2341 (2002). [CrossRef]
  6. A. D'Alessio, A. D'Anna, A. D'Orsi, P. Minutolo, R. Barbella, and A. Ciajolo, "Precursor formation and soot inception in premixed ethylene flames," Proc. Combust. Inst. 24, 973-980 (1992).
  7. M. Frenklach, "Reaction mechanism of soot formation in flames," Phys. Chem. Chem. Phys. 4, 2028-2037 (2002). [CrossRef]
  8. A. V. Krestinin, "Detailed modeling of soot formation in hydrocarbon pyrolysis," Combust. Flame 121, 513-524 (2000). [CrossRef]
  9. P. S. Greenberg and J. C. Ku, "Soot volume fraction imaging," Appl. Opt. 36, 5514-5522 (1997). [CrossRef] [PubMed]
  10. D. R. Snelling, K. A. Thomson, G. J. Smallwood, and Ö. L. Gülder, "Two-dimensional imaging of soot volume fraction in laminar diffusion flames," Appl. Opt. 38, 2478-2485 (1999). [CrossRef]
  11. C. P. Arana, M. Pontoni, S. Sen, and I. K. Puri, "Field measurements of soot volume fractions in laminar partially premixed coflow ethylene/air flames," Combust. Flame 138, 362-372 (2004). [CrossRef]
  12. Y. Xu and C. F. Lee, "Forward-illuminated light-extinction technique for soot measurements," Appl. Opt. 45, 2046-2057 (2006). [CrossRef] [PubMed]
  13. K. A. Thomson, "Soot formation in annular non-premixed laminar flames of methane-air at pressures of 0.1 to 4.0 MPa," Ph.D. dissertation (University of Waterloo, 2004).
  14. P. A. Bonczyk and R. J. Hall, "Fractal properties of soot agglomerates," Langmuir 7, 1274-1280 (1991). [CrossRef]
  15. R. A. Dobbins and C. M. Megaridis, "Absorption and scattering of light by polydisperse aggregates," Appl. Opt. 30, 4747-4754 (1991). [CrossRef] [PubMed]
  16. Ü. Ö. Köylü and G. M. Faeth, "Structure of overfire soot in buoyant turbulent diffusion flames at long residence times," Combust. Flame 89, 140-156 (1992). [CrossRef]
  17. C. M. Sorensen, "Light scattering by fractal aggregates: a review," Aerosol Sci. Technol. 35, 648-687 (2001).
  18. R. J. Hall and P. A. Bonczyk, "Sooting flame thermometry using emission/absorption tomography," Appl. Opt. 29, 4590-4598 (1990). [CrossRef] [PubMed]
  19. D. R. Snelling, K. A. Thomson, G. J. Smallwood, Ö. L. Gülder, E. J. Weckman, and R. A. Fraser, "Spectrally resolved measurement of flame radiation to determine soot temperature and concentration," AIAA J. 40, 1789-1795 (2002). [CrossRef]
  20. M. Choi, G. W. Mulholland, A. Hamins, and T. Kashiwagi, "Comparisons of soot volume fraction using gravimetric and light extinction techniques," Combust. Flame 102, 161-169 (1995). [CrossRef]
  21. C. J. Dasch, "One-dimensional tomography: a comparison of Abel, onion-peeling, and filtered backprojection methods," Appl. Opt. 31, 1146-1152 (1992). [CrossRef] [PubMed]
  22. K. J. Daun, K. A. Thomson, F. Liu, and G. J. Smallwood, "Deconvolution of axisymmetric flame properties using Tikhonov regularization," Appl. Opt. 45, 4638-4646 (2006). [CrossRef] [PubMed]
  23. W. L. Howes and D. R. Buchelle, "Optical interferometry of inhomogeneous gases," J. Opt. Soc. Am. 56, 1517-1528 (1966). [CrossRef]
  24. K. A. Thomson, O. L. Gülder, E. J. Weckman, R. A. Fraser, G. J. Smallwood, and D. R. Snelling, "Soot concentration and temperature measurements in annular, non-premixed laminar flames at pressures up to 4 MPa," Combust. Flame 140, 222-232 (2005). [CrossRef]
  25. K. T. Walsh, J. Fielding, and M. B. Long, "Effect of light-collection geometry on reconstruction errors in Abel inversions," Opt. Lett. 25, 457-459 (2000). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited