OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: James C. Wyant
  • Vol. 47, Iss. 5 — Feb. 10, 2008
  • pp: 711–717

Generalized in-line digital holographic technique based on intensity measurements at two different planes

Guohai Situ, James P. Ryle, Unnikrishnan Gopinathan, and John T. Sheridan  »View Author Affiliations

Applied Optics, Vol. 47, Issue 5, pp. 711-717 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (967 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In-line digital holography based on two-intensity measurements [Zhang et al. Opt. Lett. 29, 1787 (2004)], is modified by introducing a π shifting in the reference phase. Such an improvement avoids the assumption that the object beam must be much weaker than the reference beam in strength and results in a simplified experimental implementation. Computer simulations and optical experiments are carried out to validate the method, which we refer to as position-phase-shifting digital holography.

© 2008 Optical Society of America

OCIS Codes
(090.1760) Holography : Computer holography
(100.3010) Image processing : Image reconstruction techniques

ToC Category:

Original Manuscript: June 8, 2007
Revised Manuscript: October 15, 2007
Manuscript Accepted: December 14, 2007
Published: February 8, 2008

Guohai Situ, James P. Ryle, Unnikrishnan Gopinathan, and John T. Sheridan, "Generalized in-line digital holographic technique based on intensity measurements at two different planes," Appl. Opt. 47, 711-717 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. U. Schnars and W. Jüptner, “Direct recording of holograms by a CCD target and numerical reconstruction,” Appl. Opt. 33, 179-181 (1994). [CrossRef] [PubMed]
  2. S. Seebacher, W. Osten, and W. Jüptner, “Measuring shape and deformation of small objects using digital holography,” Proc. SPIE 3479, 104-115 (1998). [CrossRef]
  3. G. Pedrini, P. Fröning, H. Tiziani, and F. M. Santoyo, “Shape measurement of microscopic structures using digital holograms,” Opt. Commun. 164, 257-268 (1999). [CrossRef]
  4. M. Adams, T. Kreis, and W. Jüptner, “Particle size and position measurement with digital holography,” Proc. SPIE 3098, 234-240 (1997). [CrossRef]
  5. W. Haddad, D. Cullen, J. C. Solem, J. M. Longworth, A. McPherson, K. Boyer, and C. K. Rhodes, “Fourier-transform holographic microscope,” Appl. Opt. 31, 4973-4978 (1992). [CrossRef] [PubMed]
  6. J. Garcia-Sucerquia, W. Xu, S. K. Jericho, P. Klages, M. H. Jericho, and H. J. Kreuzer, “Digital in-line holographic microscopy,” Appl. Opt. 45, 836-850 (2006). [CrossRef] [PubMed]
  7. B. Javidi and T. Nomura, “Securing information by use of digital holography,” Opt. Lett. 25, 28-30 (2000). [CrossRef]
  8. B. Javidi and E. Tajahuerce, “Three-dimensional object recognition by use of digital holography,” Opt. Lett. 25, 610-612 (2000). [CrossRef]
  9. A. Nelleri, U. Gopinathan, J. Joseph, and K. Singh, “Three dimensional object recognition from digital Fresnel hologram by wavelength matched filtering,” Opt. Commun. 259, 499-506 (2006). [CrossRef]
  10. E. Darakis, T. J. Naughton, and J. J. Soraghan, “Compression defects in different reconstructions from phase-shifting digital holographic data,” Appl. Opt. 46, 4579-4586 (2007). [CrossRef] [PubMed]
  11. S. Lai, B. Kemper, and G. von Bally, “Off-axis reconstruction of in-line holograms for twin-image elimination,” Opt. Commun. 169, 37-43 (1999). [CrossRef]
  12. G. Liu and P. D. Scott, “Phase retrieval and twin-image elimination for in-line Fresnel holograms,” J. Opt. Soc. Am. A 4, 159-165 (1987). [CrossRef]
  13. Y. Zhang, G. Pedrini, W. Osten, and H. J. Tiziani, “Image reconstruction for in-line holography with the Yang-Gu algorithm,” Appl. Opt. 42, 6452-6457 (2003). [CrossRef] [PubMed]
  14. I. Yamaguchi and T. Zhang, “Phase-shifting digital holography,” Opt. Lett. 22, 1268-1270 (1997). [CrossRef] [PubMed]
  15. S. Lai, B. King, and M. A. Neifeld, “Wave front reconstruction by means of phase-shifting digital in-line holography,” Opt. Commun. 173, 155-160 (2000). [CrossRef]
  16. I. Yamaguchi, J. Kato, S. Ohta, and J. Mizuno, “Image formation in phase-shifting digital holography and applications to microscopy,” Appl. Opt. 40, 6177-6186 (2001). [CrossRef]
  17. J. Schwider, R. Burow, K.-E. Elssner, J. Grzanna, R. Spolaczyk, and K. Merkel, “Digital wave-front measuring interferometry: some systematic error sources,” Appl. Opt. 22, 3421-3432 (1983). [CrossRef] [PubMed]
  18. C. S. Guo, L. Zhang, H. T. Wang, J. Liao, and Y. Y. Zhu, “Phase-shifting error and its eliminiation in phase-shiting digital holography,” Opt. Lett. 27, 1687-1689 (2002). [CrossRef]
  19. X. F. Xu, L. Z. Cai, X. F. Meng, G. Y. Dong, and X. X. Shen, “Fast blind extraction of arbitrary unknown phase shifts by an iterative tangent approach in generalized phase-shifting interferometry,” Opt. Lett. 31, 1966-1968 (2006). [CrossRef] [PubMed]
  20. M. Atlan, M. Gross, and E. Absil, “Accurate phase-shifting digital interferometry,” Opt. Lett. 32, 1456-1458 (2007). [CrossRef] [PubMed]
  21. Y. Zhang, G. Pedrini, W. Osten, and H. J. Tiziani, “Reconstruction of in-line digital holograms from two intensity measurements,” Opt. Lett. 29, 1787-1789 (2004). [CrossRef] [PubMed]
  22. W. L. Bragg and G. L. Rogers, “Elimination of the unwanted image in diffraction microscopy,” Nature 167, 190-191 (1951). [CrossRef] [PubMed]
  23. G. L. Rogers, “In-line soft-x-ray holography: the unwanted image,” Opt. Lett. 19, 67-67 (1994). [CrossRef] [PubMed]
  24. T. Q. Xiao, H. J. Xu, Y. J. Zhang, J. W. Chen, and Z. Z. Xu, “Digital image decoding for in-line X-ray holography using two holograms,” J. Mod. Opt. 45, 343-353 (1998). [CrossRef]
  25. Y. Nishino, T. Ishikawa, K. Hayashi, Y. Takahashi, and E. Matsubara, “Two-energy twin image removal in atomic-resolution x-ray holography,” Phys. Rev. B 66, 092105 (2002). [CrossRef]
  26. G. Situ and J. T. Sheridan, “A new reconstruction algorithm for in-line digital holography,” in European Conference on Lasers and Electro-Optics, 2007 and the International Quantum Electronics, Conference (CLEOE-IQEC 2007) (IEEE, 2007), digital OID: 4386033. [CrossRef] [PubMed]
  27. J. W. Goodman, Introduction to Fourier Optics, 3rd ed. (Roberts & Company, 2004).
  28. Ê. Lalor, “Conditions for validity of the angular spectrum of plane waves,” J. Opt. Soc. Am. 58, 1235-1237 (1968). [CrossRef]
  29. D. Mendlovic, Z. Zalevsky, and N. Konforti, “Computation considerations and fast algorithms for calculating the diffraction integral,” J. Mod. Opt. 44, 407-414 (1997). [CrossRef]
  30. D. Mas, J. Carcia, C. Ferreira, L. M. Bernardo, and F. Marinho, “Fast algorithm for free-space diffraction patterns calculation,” Opt. Commun. 164, 233-245 (1999). [CrossRef]
  31. B. M. Hennelly and J. T. Sheridan, “Generalizing, optimizing, and inventing numerical algorithms for the fractional Fourier, Fresnel, and linear canonical transforms,” J. Opt. Soc. Am. A 22, 917-927 (2005). [CrossRef]
  32. B. M. Hennelly and J. T. Sheridan, “Fast numerical algorithm for the linear canonical transform,” J. Opt. Soc. Am. A 22, 928-937 (2005). [CrossRef]
  33. http://www.edmundoptics.com/onlinecatalog/displayproduct.cfm?productID=1790.
  34. A. Stadelmaier and J. H. Massig, “Compensation of lens aberrations in digital holography,” Opt. Lett. 25, 1630-1632 (2000). [CrossRef]
  35. F. Montfort, F. Charriére, T. Colomb, E. Cuche, P. Marquet, and C. Depeursinge, “Purely numerical compensation for microscope objective phase curvature in digital holographic microscopy: influence of digital phase mask position,” J. Opt. Soc. Am. A 23, 2944-2953 (2006). [CrossRef]
  36. L. Miccio, D. Alfieri, S. Grilli, P. Ferraro, A. Finizio, L. De Petrocellis, and S. D. Nicola, “Direct full compensation of the aberrations in quantitative phase microscopy of thin objects by a single digital hologram,” Appl. Phys. Lett. 90, 041104 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited