OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: James C. Wyant
  • Vol. 47, Iss. 6 — Feb. 20, 2008
  • pp: 731–736

Evaluation of fitness parameters used in an iterative approach to aberration correction in optical sectioning microscopy

Simon P. Poland, Amanda J. Wright, and John M. Girkin  »View Author Affiliations


Applied Optics, Vol. 47, Issue 6, pp. 731-736 (2008)
http://dx.doi.org/10.1364/AO.47.000731


View Full Text Article

Enhanced HTML    Acrobat PDF (1310 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A major problem when imaging at depth within a biological sample in confocal or nonlinear microscopy is the introduction of sample induced aberrations. Adaptive optical systems can provide a technique to compensate for these sample aberrations and often iterative optimizations are used to improve on a particular parameter of the image (known as the fitness parameter). In this investigation, using a deformable membrane mirror as the adaptive optic element, we examine the effectiveness of a number of fitness parameters, when used with a genetic algorithm, at determining the optimal mirror shape required to compensate for sample induced aberrations. These fitness parameters are compared in terms of the number of mirror changes required to achieve optimization and the final axial resolution of the optical system. The effect that optimizing each fitness parameter has on the lateral and axial point-spread function is also examined.

© 2008 Optical Society of America

OCIS Codes
(110.0180) Imaging systems : Microscopy
(180.1790) Microscopy : Confocal microscopy
(180.6900) Microscopy : Three-dimensional microscopy
(110.0113) Imaging systems : Imaging through turbid media
(110.1080) Imaging systems : Active or adaptive optics

ToC Category:
Imaging Systems

History
Original Manuscript: September 4, 2007
Manuscript Accepted: December 7, 2007
Published: February 15, 2008

Virtual Issues
Vol. 3, Iss. 3 Virtual Journal for Biomedical Optics

Citation
Simon P. Poland, Amanda J. Wright, and John M. Girkin, "Evaluation of fitness parameters used in an iterative approach to aberration correction in optical sectioning microscopy," Appl. Opt. 47, 731-736 (2008)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-47-6-731


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. T. Wilson and A. R. Carlini, “The effect of aberrations on the axial response of confocal imaging systems,” J. Microsc. 154, 243-256 (1989). [CrossRef]
  2. D. Wan, M. Rajadhyasksha, and R. H. Webb, “Analysis of spherical aberration of a water immersion objective: application to specimens with refractive indices 1.33-1.40,” J. Microsc. 197, 274-284 (2000). [CrossRef] [PubMed]
  3. H. W. Babcock, “The possibility of compensating astronomical seeing,” Publ. Astron. Soc. Pac. 65, 229-236 (1953). [CrossRef]
  4. M. A. A. Neil, R. Juskaitis, M. J. Booth, T. Wilson, T. Tanaka, and S. Kawata, “Adaptive aberration correction in a two photon microscope,” J. Microsc. 200, 105-108 (2000). [CrossRef] [PubMed]
  5. M. J. Booth, M. A. A. Neil, and T. Wilson, “Aberration correction for confocal imaging in refractive-index-mismatched-media,” J. Microsc. 192, 90-98 (1998). [CrossRef]
  6. M. Schwertner, M. J. Booth, and T. Wilson, “Characterizing specimen induced aberrations for high NA adaptive optical microscopy,” Opt. Express 12, 6540-6552 (2004). [CrossRef] [PubMed]
  7. L. Sherman, J. Y. Ye, O. Albert, and T. B. Norris, “Adaptive correction of depth-induced aberrations in muliphoton scanning microscopy using a deformable mirror,” J. Microsc. 206, 65-71 (2002). [CrossRef] [PubMed]
  8. P. N. Marsh, D. Burns, and J. M. Girkin, “Practical implementation of adaptive optics in multiphoton microscopy,” Opt. Express 11, 1123-1130 (2003). [CrossRef] [PubMed]
  9. A. J. Wright, D. Burns, B. A. Patterson, S. P. Poland, G. Valentine, and J. M. Girkin, “Active aberration correction in confocal and multiphoton microscopy,” Microsc. Res. Tech. 67, 36-44 (2005). [CrossRef] [PubMed]
  10. G. J. Brakenhoff, G. W. Wurpel, K. Jalink, L. Oomen, L. Brocks, and J. M. Zwier, “Characterization of sectioning fluorescence microscopy with thin uniform fluorescent layers: sectioned imaging property or SIPcharts,” J. Microsc. 219, 122-132 (2005). [CrossRef] [PubMed]
  11. G. Vicidomini, M. Schneider, P. Bianchini, S. Krol, T. Szellas, and A. Diaspro, “Characterization of uniform ultrathin layer for z-response measurements in three-dimensional section fluorescence microscopy,” J. Microsc. 225, 88-95 (2007). [CrossRef] [PubMed]
  12. W. Lubeigt, G. Valentine, J. Girkin, E. Bente, and D. Burns, “Active transverse mode control and optimization of all-solid-state laser using an intracavity adaptive-optic mirror,” Opt. Express 10, 550-555 (2002). [PubMed]
  13. R. L. Zucker, “Confocal microscopy system performance: axial resolution,” Microscopy Today 12, 38-40 (2004).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited