OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: James C. Wyant
  • Vol. 47, Iss. 6 — Feb. 20, 2008
  • pp: 792–798

Light pollution simulations for planar ground-based light sources

Miroslav Kocifaj  »View Author Affiliations


Applied Optics, Vol. 47, Issue 6, pp. 792-798 (2008)
http://dx.doi.org/10.1364/AO.47.000792


View Full Text Article

Enhanced HTML    Acrobat PDF (658 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The light pollution model is employed to analyze spatial behavior of luminance at the night sky under cloudless and overcast conditions. Enhanced light excess is particularly identified at cloudy skies, because the clouds efficiently contribute to the downward luminous flux. It is evident that size of ground-based light sources can play an important role in the case of overcast sky conditions. Nevertheless, the realistically sized light sources are rarely embedded into light pollution modeling, and rather they are replaced by simple point sources. We discuss the discrepancies between sky luminance distributions when at first the planar light sources are considered and at second the point-source approximation is accepted. The found differences are noticeable if the size of the light source, distance to the observer, and altitude of a cloudy layer are comparable one to the other. Compared with point-source approximation, an inclusion of the size factor into modeling the light sources leads to partial elimination of the steep changes of sky luminance (typical for point sources of light). The narrow and sharp light pillars normally presented on the sky illuminated by point light sources can disappear or fuse together when two or more nearby light sources are considered with their real sizes. Sky elements situated close to the horizon will glow efficiently if luminous flux originates from two-dimensional ground-based entities (such as cities or villages).

© 2008 Optical Society of America

OCIS Codes
(010.1290) Atmospheric and oceanic optics : Atmospheric optics
(290.1090) Scattering : Aerosol and cloud effects
(290.1310) Scattering : Atmospheric scattering

ToC Category:
Scattering

History
Original Manuscript: October 12, 2007
Manuscript Accepted: December 21, 2007
Published: February 20, 2008

Citation
Miroslav Kocifaj, "Light pollution simulations for planar ground-based light sources," Appl. Opt. 47, 792-798 (2008)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-47-6-792


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. Isobe and S. Hamamura, “Light pollution and its energy loss,” Astrophys. Space Sci. 273, 289-294 (2000). [CrossRef]
  2. M. Di Sora, “The fight against light pollution in Italy,” Mem. Soc. Astron. Ital. 71, 271-279 (2000).
  3. A. Barducci, P. Marcoionni, I. Pippi, and M. Poggesi, “Effects of light pollution revealed during a nocturnal aerial survey by two hyperspectral imagers,” Appl. Opt. 42, 4349-4361 (2003). [CrossRef] [PubMed]
  4. A. Hännel, “The situation of light pollution in Germany,” Mem. Soc. Astron. Ital. 71, 153-158 (2000).
  5. F. D. Prugna, “Visual measurements and spectra survey of night sky brightness in Venezuela and Italy,” Astron. Astrophys. Suppl. Ser. 140, 345-349 (1999). [CrossRef]
  6. R. Dick and A. Weeks, “Fighting light pollution in the Ottawa area--technical elements,” J. R. Astron. Soc. Can. 91, 193-197 (1997).
  7. D. L. Crawford, “Light pollution: the problem and the potential solutions,” Baltic Astron. 5, 263-269 (1996).
  8. R. H. Garstang, “Model for artificial night-sky illumination,” Publ. Astron. Soc. Pac. 98, 364-375 (1986). [CrossRef]
  9. D. X. Kerola, “Modelling artificial night-sky brightness with a polarized multiple scattering radiative transfer computer code,” Mon. Not. R. Astron. Soc. 365, 1295-1299 (2006). [CrossRef]
  10. M. Kocifaj, “Light pollution model for cloudy and cloudless night skies with ground-based light sources,” Appl. Opt. 46, 3013-3022 (2007). [CrossRef] [PubMed]
  11. C. R. Benn and S. L. Ellison, “Brightness of the night sky over La Palma,” New Astron. Rev. 42, 503-507 (1998). [CrossRef]
  12. M. Pedani, “Light pollution at the Roque de los Muchachos Observatory,” New Astron. Rev. 9, 641-650 (2004). [CrossRef]
  13. P. Cinzano, “Modelling light pollution from searchlights,” Mem. Soc. Astron. Ital. 71, 239-250 (2000).
  14. P. Cinzano, F. Falchi, and C. D. Elvidge, “The first world atlas of the artificial night sky brightness,” Mon. Not. R. Astron. Soc. 328, 689-707 (2001). [CrossRef]
  15. M. I. Mishchenko, “Light scattering by size-shape distributions of randomly oriented axially symmetric particles of size comparable to a wavelength,” Appl. Opt. 32, 4652-4666(1993). [CrossRef] [PubMed]
  16. A. Penttilä and K. Lumme, “The effect of particle shape on scattering--a study with a collection of axisymmetric particles and sphere clusters,” J. Quant. Spectrosc. Radiat. Transfer 89, 291-301 (2004). [CrossRef]
  17. P. Cinzano and C. D. Elvidge, “Night sky brightness at sites from DMSP-OLS satellite measurements,” Mon. Not. R. Astron. Soc. 353, 1107-1116 (2004). [CrossRef]
  18. R. H. Garstang, “Dust and light pollution,” Publ. Astron. Soc. Pac. 103, 1109-1116 (1991). [CrossRef]
  19. C. Chalkias, M. Petrakis, B. Psiloglou, and M. Lianou, “Modelling of light pollution in suburban areas using remotely sensed imagery and GIS,” J. Environ. Manage. 79, 57-63(2006). [CrossRef]
  20. R. Berry, “Light pollution in southern Ontario,” J. R. Astron. Soc. Can. 70, 97-115 (1976).
  21. P. Cinzano, “A portable spectrophotometer for light pollution measurements,” Mem. S.A.It. Suppl. 5, 395-398 (2004).
  22. K. M. Lata, K. V. S. Badarinath, T. V. R. Rao, R. R. Reddy, Y. N. Ahammed, K. R. Gopal, and P. A. Azeem, “Studies on aerosol optical properties over urban and semi-urban environments of Hyderabad and Anantapur,” J. Quant. Spectrosc. Radiat. Transfer 78, 257-268 (2003). [CrossRef]
  23. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley-VCH, 2004).
  24. M. Kocifaj, H. Horvath, and J. Hrvol, “Optical properties of urban aerosols in the region Bratislava--Vienna--II: comparisons and results,” Atmos. Environ. 40, 1935-1948 (2006). [CrossRef]
  25. N. Lagrosas, Y. Yoshii, H. Kuze, N. Takeuchi, S. Naito, A. Sone, and H. Kan, “Observation of boundary layer aerosols using a continuously operated, portable lidar system,” Atmos. Environ. 38, 3885-3892 (2004). [CrossRef]
  26. N. A. Krotkov, B. K. Bhartia, J. R. Herman, V. Fioletov, and J. Kerr, “Satellite estimation of spectral surface UV irradiance in the presence of tropospheric aerosols: 1. Cloud-free case,” J. Geophys. Res. 103, 8779-8793 (1998). [CrossRef]
  27. L. M. Celnikier, “Understanding the physics of meteoritic descent,” Am. J. Phys. 63, 524-535 (1995). [CrossRef]
  28. B. T. Draine and P. J. Flatau, “User guide for the discrete dipole approximation code DDSCAT.6.1,” Freeware, http://arxiv.org/abs/astro-ph/0409262 (2004).
  29. M. I. Mishchenko, J. M. Dlugach, E. G. Zanovitskij, and N. T. Yakharova, “Bidirectional reflectance of flat, optically thick particulate layers: an efficient radiative transfer solution and applications to snow and soil surfaces,” J. Quant. Spectrosc. Radiat. Transfer 63, 409-432 (1999). [CrossRef]
  30. C. J. Braak, J. F. de Haan, C. V. M. Van der Mee, J. W. Hovenier, and L. D. Travis, “Parameterized scattering matrices for small particles in planetary atmospheres,” J. Quant. Spectrosc. Radiat. Transfer 69, 585-604 (2001). [CrossRef]
  31. O. V. Kalashnikova and I. N. Sokolik, “Modeling the radiative properties of nonspherical soil-derived mineral aerosols,” J. Quant. Spectrosc. Radiat. Transfer 87, 137-166(2004). [CrossRef]
  32. R. H. Garstang, “Night-sky brightness at observatories and sites,” Publ. Astron. Soc. Pac. 101, 306-329 (1989). [CrossRef]
  33. R. N. Green, B. A. Wielicki, J. A. Coakley, L. L. Stowe, P. O'R. Hinton, and Y. Hu, “Clouds and the Earth's Radiant Energy System (CERES) algorithm theoretical basis document,” CERES inversion to instantaneous top of the atmosphere fluxes, Release 2.2, 2 June (1997).
  34. International Lighting Vocabulary, CIE publication 17.4 (Bureau Central de la Commission Electrotechnique Internationale, 1987).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited