OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: James C. Wyant
  • Vol. 47, Iss. 6 — Feb. 20, 2008
  • pp: 860–869

Two-dimensional synthetic aperture laser optical feedback imaging using galvanometric scanning

Arnaud Witomski, Eric Lacot, Olivier Hugon, and Olivier Jacquin  »View Author Affiliations

Applied Optics, Vol. 47, Issue 6, pp. 860-869 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (1994 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We have improved the resolution of our laser optical feedback imaging (LOFI) setup by using a synthetic aperture (SA) process. We report a two-dimensional (2D) SA LOFI experiment where the unprocessed image (i.e., the classical LOFI image) is obtained point by point, line after line using full 2D galvanometric scanning. The 2D superresolved image is then obtained by successively computing two angular SA operations while a one-dimensional angular synthesis is preceded by a frequency synthesis to obtain a 2D superresolved image conventionally in the synthetic aperture radar (SAR) method and their corresponding laser method called synthetic aperture ladar. The numerical and experimental results are compared.

© 2008 Optical Society of America

OCIS Codes
(100.3010) Image processing : Image reconstruction techniques
(110.2970) Imaging systems : Image detection systems
(280.3420) Remote sensing and sensors : Laser sensors

ToC Category:
Remote sensing and sensors

Original Manuscript: September 20, 2007
Manuscript Accepted: November 26, 2007
Published: February 20, 2008

Arnaud Witomski, Eric Lacot, Olivier Hugon, and Olivier Jacquin, "Two-dimensional synthetic aperture laser optical feedback imaging using galvanometric scanning," Appl. Opt. 47, 860-869 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. C. Curlander and R. N. McDonough, Synthetic Aperture Radar: Systems and Signal Processing (Wiley, 1991).
  2. R. O. Harger, Synthetic Aperture Radar Systems: Theory and Design (Academic, 1970).
  3. A. Ja. Pasmurov and J. S. Zimoview, Radar Imaging and Holography (IEEE, 2005). [CrossRef]
  4. T. S. Lewis and H. S. Hutchins, “A synthetic aperture at 10.6 Microns,” Proc. IEEE 58, 1781-1782 (1970). [CrossRef]
  5. C. C. Aleksoff, J. S. Accetta, L. M. Peterson, A. M. Tai, A. Klossler, K. S. Schroeder, R. M. Majwski, J. O. Abshier, and M. Fee, “Synthetic aperture imaging with a pulsed CO2 laser,” Proc. SPIE 783, 29-40 (1987).
  6. S. Markus, B. D. Colella, and T. J. Green, Jr., “Solid-state laser synthetic aperture radar,” Appl. Opt. 33, 960-964 (1994).
  7. A. Witomski, E. Lacot, O. Hugon, and O. Jacquin, “Synthetic aperture laser optical feedback imaging using galvanometric scanning,” Opt. Lett. 31, 3031-3033 (2006). [CrossRef] [PubMed]
  8. M. Bashkansky, R. L. Lucke, E. Funk, L. J. Rickard, and J. Reintjes, “Two-dimensional synthetic aperture imaging in the optical domain,” Opt. Lett. 27, 1983-1985 (2002). [CrossRef]
  9. S. M. Beck, J. R. Buck, W. F. Buell, R. P. Dickinson, D. A. Kozlowski, N. J. Marechal, and T. J. Wright, “Synthetic-aperture imaging laser radar: laboratory demonstration and signal processing,” Appl. Opt. 44, 7621-7629 (2005). [CrossRef] [PubMed]
  10. E. Lacot, R. Day, and F. Stoeckel, “Laser optical feedback tomography,” Opt. Lett. 24, 744-746 (1999). [CrossRef]
  11. K. Otsuka, “Ultrahigh sensitivity laser Doppler velocimetry with a microchip solid-state laser,” Appl. Opt. 33, 1111-1114 (1994). [PubMed]
  12. E. Lacot, R. Day, and F. Stoeckel, “Coherent laser detection by frequency-shifted optical feedback,” Phys. Rev. A 64, 043815(2001). [CrossRef]
  13. O. Hugon, I. A. Paun, C. Ricard, B. van der Sanden, E. Lacot, O. Jacquin, and A. Witomski, “Cell imaging by coherent back-scattering microscopy using frequency-shifted optical feedback in a microchip laser,” Ultramicroscopy (2007). [PubMed]
  14. V. Muzet, E. Lacot, O. Hugon, and Y. Guillard, “Experimental comparison of shearography and laser optical feedback imaging for crack detection in concrete structures,” Proc. SPIE 5856, 793-799 (2005). [CrossRef]
  15. When αx=0 and αy=0, if there is no misalignment, the center of the Gaussian laser beam successively reaches the two galvanometric mirrors on their rotation axis and finally the target on the origin of our experimental coordinate system (x=0, y=0, z=0). If we consider a laser misalignment, the final position of the Gaussian laser beam center is given by (Δx, Δy, z=0).
  16. A. Papoulis, Signal Analysis (McGraw-Hill, 1977), pp. 262-272.
  17. D. Park and J. H. Shapiro, “Performance analysis of optical synthetic aperture radars,” Proc. SPIE 999, 100-116(1989).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited