OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: James C. Wyant
  • Vol. 47, Iss. 7 — Mar. 1, 2008
  • pp: 933–943

All-optical arithmetic unit with the help of terahertz-optical-asymmetric-demultiplexer-based tree architecture

Dilip Kumar Gayen and Jitendra Nath Roy  »View Author Affiliations

Applied Optics, Vol. 47, Issue 7, pp. 933-943 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (1215 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



An all-optical arithmetic unit with the help of terahertz-optical-asymmetric-demultiplexer (TOAD)-based tree architecture is proposed. We describe the all-optical arithmetic unit by using a set of all-optical multiplexer, all-optical full-adder, and optical switch. The all-optical arithmetic unit can be used to perform a fast central processor unit using optical hardware components. We have tried to exploit the advantages of both optical tree architecture and TOAD-based switch to design an integrated all-optical circuit that can perform binary addition, addition with carry, subtract with borrow, subtract (2’s complement), double, increment, decrement, and transfer operations.

© 2008 Optical Society of America

OCIS Codes
(060.1810) Fiber optics and optical communications : Buffers, couplers, routers, switches, and multiplexers
(060.4510) Fiber optics and optical communications : Optical communications
(200.4560) Optics in computing : Optical data processing
(220.4830) Optical design and fabrication : Systems design
(230.4320) Optical devices : Nonlinear optical devices

ToC Category:
Optics in Computing

Original Manuscript: July 18, 2007
Revised Manuscript: November 27, 2007
Manuscript Accepted: December 20, 2007
Published: February 28, 2008

Dilip Kumar Gayen and Jitendra Nath Roy, "All-optical arithmetic unit with the help of terahertz-optical-asymmetric-demultiplexer-based tree architecture," Appl. Opt. 47, 933-943 (2008)

Sort:  Year  |  Journal  |  Reset  


  1. T. Scheider, Nonlinear Optics in Telecommunications (Springer-Verlag, 2004), Chaps. 6 and 12.
  2. C. S. Vikram and H. J. Caulfield, “Position-sensing detector for logical operations using incoherent light,” Opt. Eng. 44, 115201 (2005). [CrossRef]
  3. G. Li, F. Qian, H. Ruan, and L. Liu, “Compact parallel optical modified-signed-digit arithmetic-logic array processor with electron-trapping device,” Appl. Opt. 38, 5039-5045 (1999). [CrossRef]
  4. J. N. Roy and S. Mukhopadhyay, “A minimization scheme of optical space variant logic operation in a combinational architecture,” Opt.commun. 119, 499-504 (1995). [CrossRef]
  5. S. D. Smith, I. Janossy, H. A. Mackenzie, J. G. E. Reid, M. R. Taghizadeh, A. P. Tooley, and A. C. Walker, “Nonlinear optical circuits, logic gates for optical computers: the first digital optical circuits.,” Opt.Eng. 24, 569-573 (1985).
  6. K. R. Chowdhury and S. Mukhopadhyay, “Binary optical arithmetic operation scheme with tree architecture by proper accommodation of optical nonlinear materials,” Opt. Eng. 43, 132-136 (2004). [CrossRef]
  7. I. M. Khan, A. A. S. Awwal, and A. M. Chowdhury, “Characterization of intensity-coded multi-valued logic circuit implementation,” Opt. Eng. 38, 508-513 (1999). [CrossRef]
  8. M. A. Karim, A. A. S. Awwal, and A. K. Cheri, “Polarization encoded optical shadow casting logic unit,” Appl.Opt. 26, 2720-2726 (1987). [CrossRef] [PubMed]
  9. A. J. Poustie, K. J. Blow, A. E. Kelly, and R. J. Manning, “All-optical full-adder with bit differential delay,” Opt.Commun. 156, 22-26 (1998). [CrossRef]
  10. I. Glesk, R. J. Runser, and P. R. Prucnal, “New generation of devices for all-optical communication,” Acta Phys. Slov. 51, 151-162 (2001).
  11. N. Pahari, D. N. Das, and S. Mukhopadhyay, “All-optical method for the addition of binary data by nonlinear materials,” Appl.Opt. 43, 6147-6150 (2004). [CrossRef] [PubMed]
  12. A. K. Das and S. Mukhopadhyay, “An all-optical matrix multiplication scheme with non-linear material based switching system,” Chin. Opt. Lett. 3, 172-175 (2005).
  13. J. N. Roy, A. K. Maiti, and S. Mukhopadhyay, “Designing of an all-optical time division multiplexing scheme with the help of nonlinear material based tree-net architecture,” Chin. Opt. Lett. 4, 483-486 (2006).
  14. S. Mukhopadhyay, D. N. Das, P. P. Das, and P. Ghosh, “Implementation of all-optical digital matrix multiplication scheme with nonlinear material,” Opt. Eng. 40, 1998-2002 (2001). [CrossRef]
  15. A. D. McAulay, “Optical arithmetic unit using bit-WDM,” Opt. Laser Technol. 32, 421-427 (2000). [CrossRef]
  16. J. P. Sokoloff, P. R. Prucnal, I. Glesk, and M. Kane, “A terahertz optical asymmetric demultiplexer (TOAD),” IEEE Photon. Technol. Lett. 5, 787-789 (1993). [CrossRef]
  17. J. N. Roy and D. K. Gayen, “Integrated all-optical logic and arithmetic operations with the help of TOAD based interferometer device--alternative approach,” Appl. Opt. 46, 5304-5310 (2007). [CrossRef] [PubMed]
  18. A. I. Zavalin, J. Shamir, C. S. Vikram, and H. J. Caulfield, “Achieving stabilization in interferometric logic operations,” Appl. Opt. 45, 360-365 (2006). [CrossRef] [PubMed]
  19. N. J. Doran and D. Wood, “Nonlinear loop mirror,” Opt. Lett. 13, 56-58 (1988). [CrossRef] [PubMed]
  20. T. Yamamoto, E. Yoshida, and M. Nakazawa, “Ultra fast nonlinear optical loop mirror for demultiplexing 640 Gbit/s TDM signals,” Electron. Lett. 34, 1013-1014 (1998). [CrossRef]
  21. M. Jino and T. Matsumoto, “Ultrafast all-optical logic operations in a nonlinear Sagnac interferometer with two control beams,” Opt. Lett. 16, 220-222 (1991). [CrossRef]
  22. B. C. Wang, V. Baby, W. Tong, L. Xu, M. Friedman, R. J. Runser, I. Glesk, and P. R. Pruncnal, “A novel fast optical switch based on two cascaded terahertz asymmetric demultiplexers(TOAD),” Opt. Express 10, 15-23 (2002). [PubMed]
  23. H. Sotobayashi, W. Chujo, and K. Kitayama, “Highly spectral efficient optical code division multiplexing transmission system,” IEEE J. Sel. Top. Quantum Electron. 10, 250-258(2004). [CrossRef]
  24. G. P. Agrawal, Applications of Nonlinear Fibre Optics (Academic, 2001), Chap. 3.
  25. S. Mukhopadhyay, “An optical conversion system: From binary to decimal and decimal to binary,” Opt. Commun. 76, 309-312 (1990). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited