OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: James C. Wyant
  • Vol. 47, Iss. 7 — Mar. 1, 2008
  • pp: 944–956

Side-line tunable laser transmitter for differential absorption lidar measurements of CO 2 : design and application to atmospheric measurements

Grady J. Koch, Jeffrey Y. Beyon, Fabien Gibert, Bruce W. Barnes, Syed Ismail, Mulugeta Petros, Paul J. Petzar, Jirong Yu, Edward A. Modlin, Kenneth J. Davis, and Upendra N. Singh  »View Author Affiliations

Applied Optics, Vol. 47, Issue 7, pp. 944-956 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (30097 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A 2 μm wavelength, 90 mJ , 5 Hz pulsed Ho laser is described with wavelength control to precisely tune and lock the wavelength at a desired offset up to 2.9 GHz from the center of a CO 2 absorption line. Once detuned from the line center the laser wavelength is actively locked to keep the wavelength within 1.9 MHz standard deviation about the setpoint. This wavelength control allows optimization of the optical depth for a differential absorption lidar (DIAL) measuring atmospheric CO 2 concentrations. The laser transmitter has been coupled with a coherent heterodyne receiver for measurements of CO 2 concentration using aerosol backscatter; wind and aerosols are also measured with the same lidar and provide useful additional information on atmospheric structure. Range-resolved CO 2 measurements were made with < 2.4 % standard deviation using 500 m range bins and 6.7 min ( 1000 pulse pairs) integration time. Measurement of a horizontal column showed a precision of the CO 2 concentration to < 0.7 % standard deviation using a 30 min ( 4500 pulse pairs) integration time, and comparison with a collocated in situ sensor showed the DIAL to measure the same trend of a diurnal variation and to detect shorter time scale CO 2 perturbations. For vertical column measurements the lidar was setup at the WLEF tall tower site in Wisconsin to provide meteorological profiles and to compare the DIAL measurements with the in situ sensors distributed on the tower up to 396 m height. Assuming the DIAL column measurement extending from 153 m altitude to 1353 m altitude should agree with the tower in situ sensor at 396 m altitude, there was a 7.9 ppm rms difference between the DIAL and the in situ sensor using a 30 min rolling average on the DIAL measurement.

© 2008 Optical Society of America

OCIS Codes
(010.3640) Atmospheric and oceanic optics : Lidar
(010.3920) Atmospheric and oceanic optics : Meteorology
(010.7030) Atmospheric and oceanic optics : Troposphere
(140.0140) Lasers and laser optics : Lasers and laser optics
(280.0280) Remote sensing and sensors : Remote sensing and sensors
(280.1910) Remote sensing and sensors : DIAL, differential absorption lidar

ToC Category:
Remote Sensing and Sensors

Original Manuscript: November 14, 2007
Manuscript Accepted: December 14, 2007
Published: February 29, 2008

Grady J. Koch, Jeffrey Y. Beyon, Fabien Gibert, Bruce W. Barnes, Syed Ismail, Mulugeta Petros, Paul J. Petzar, Jirong Yu, Edward A. Modlin, Kenneth J. Davis, and Upendra N. Singh, "Side-line tunable laser transmitter for differential absorption lidar measurements of CO2: design and application to atmospheric measurements," Appl. Opt. 47, 944-956 (2008)

Sort:  Year  |  Journal  |  Reset  


  1. Space Studies Board, National Research Council, Earth Science and Applications from Space: National Imperatives for the Next Decade and Beyond (National Academies Press, 2007).
  2. S. Ismail, G. Koch, N. Abedin, T. Refaat, M. Rubio, K. Davis, C. Miller, S. Vay, and U. Singh, “Development of a ground-based 2-micron differential absorption lidar system to profile tropospheric CO2,” in NASA Earth Science Technology Conference 2006, paper B9P3.
  3. R. T. Menzies and D. M. Tratt, “Differential laser absorption spectrometry for global profiling of tropospheric carbon dioxide,” Appl. Opt. 42, 6569-6577 (2003). [CrossRef] [PubMed]
  4. G. J. Koch, B. W. Barnes, M. Petros, J. Y. Beyon, F. Amzajerdian, J. Yu, R. E. Davis, S. Ismail, S. Vay, M. J. Kavaya, and U. N. Singh, “Coherent differential absorption lidar measurements of CO2,” Appl. Opt. 43, 5092-5099 (2004). [CrossRef] [PubMed]
  5. F. Gibert, P. H. Flamant, D. Bruneau, and C. Loth, “Two-micrometer heterodyne differential absorption lidar measurements of the atmospheric CO2 mixing ratio in the boundary layer,” Appl. Opt. 45, 4448-4458 (2006). [CrossRef] [PubMed]
  6. A. S. Moore, K. E. Brown, W. M. Hall, J. C. Barnes, W. C. Edwards, L. B. Petway, A. D. Little, W. S. Luck, I. W. Jones, C. W. Antill, E. V. Browell, and S. Ismail, “Development of the lidar atmospheric sensing experiment (LASE). An advanced airborne DIAL instrument,” in Advances in Atmospheric Remote Sensing with Lidar, A. Ansmann, R. Neuber, P. Rairoux, and U. Wandinger, eds. (Springer-Verlag, 1996), pp. 281-288.
  7. D. Bruneau, F. Gibert, P. H. Flamant, and J. Pelon, “Complementary study of differential absorption lidar optimization in direct and heterodyne detection,” Appl. Opt. 45, 4898-4908(2006). [CrossRef] [PubMed]
  8. J. Yu, B. C. Trieu, E. A. Modlin, U. N. Singh, M. J. Kavaya, S. Chen, Y. Bai, P. Petzar, and M. Petros, “1 J/pulse Q-switched 2 μm solid-state laser,” Opt. Lett. 31, 462-464 (2006). [CrossRef] [PubMed]
  9. J. Yu, A. Braud, and M. Petros, “600 mJ double-pulsed 2-micron laser,” Opt. Lett. 28, 540-542 (2003). [CrossRef] [PubMed]
  10. G. J. Koch, J. Y. Beyon, B. W. Barnes, M. Petros, J. Yu, F. Amzajerdian, M. J. Kavaya, and U. N. Singh, “High-energy 2 μm doppler lidar for wind measurements,” Opt. Eng. 46, 116201(2007). [CrossRef]
  11. M. W. Phillips, J. Ranson, G. D. Spiers, and R. T. Menzies, “Development of a coherent laser transceiver for the NASA CO2 laser absorption spectrometer,” in Proceedings of the 2004 Conference on Lasers and Electro-Optics, San Francisco, Calif.
  12. G. J. Koch, A. N. Dharamsi, C. M. Fitzgerald, and J. C. McCarthy, “Frequency stabilization of an Ho:Tm:YLF laser to absorption lines of carbon dioxide,” Appl. Opt. 39, 3664-3669 (2000). [CrossRef]
  13. M. Mitsuhara, M. Ogasawara, M. Oishi, H. Sugiura, and K. Kasaya, “2.05-μm wavelength InGaAs-InGaAs distributed-feedback multiquantum-well lasers with 10 mW output power,” IEEE Photon. Technol. Lett. 11, 33-35 (1999). [CrossRef]
  14. C. P. Hale, S. W. Henderson, and D. M. D'Epagnier, “Tunable highly-stable master/local oscillator laser for coherent lidar applications,” in Proceedings of Tenth Biennial Coherent Laser Radar Technologies and Applications Conference, Mt. Hood, Oregon, 28 June 1999 (Universities Space Research Associations, Huntsville, Ala., 1999), pp. 115-118.
  15. G. J. Koch, M. Petros, J. Yu, and U. N. Singh, “Precise wavelength control of a single-frequency Ho:Tm:YLF laser,” Appl. Opt. 41, 1718-1721 (2002). [CrossRef] [PubMed]
  16. F. Gibert, P. H. Flamant, J. Cuesta, and D. Bruneau, “Vertical 2-μm heterodyne differential absorption lidar measurements of mean CO2 mixing ratio in the troposphere,” under review J. Atmos. Ocean. Tech. (in press).
  17. J. Y. Beyon and G. J. Koch, “Energy estimation technique for differential absorption lidar under minimum mean square error criteria,” manuscript to be submitted to Opt. Eng.
  18. L. Regalia-Jarlot, V. Zeninari, B. Parvitte, A. Grossel, X. Thomas, P. von der Heyden, and G. Durry, “A complete study of the line intensities of four bands of CO2 around 1.6 and 2.0 μm: a comparison between Fourier transform and diode laser measurements,” J. Quant. Spectrosc. Radiat. Transfer 101, 325-335 (2006). [CrossRef]
  19. Y. Bai, J. Yu, M. Petros, P. Petzar, B. Trieu, H. Lee, and U. Singh, “Highly efficient Q-switched Ho:YLF laser pumped by Tm:fiber laser,” in Proceedings of 2007 Conference on Lasers and Electro-Optics, Baltimore, Md. , paper CTuN5.
  20. S. A. Vay, B. E. Anderson, T. J. Conway, G. W. Sachse, J. E. Collins Jr., D. R. Blake, and D. J. Westberg, “Airborne observations of the tropospheric CO2 distribution and its controlling factors over the South Pacific basin,” J. Geophys. Res. 104, 5663-5676 (1999). [CrossRef]
  21. S. A. Vay, J.-H. Woo, B. E. Anderson, K. L. Thornhill, D. R. Blake, D. J. Westberg, C. M. Kiley, M. A. Avery, G. W. Sachse, D. G. Streets, Y. Tsutsumi, and S. R. Nolf, “Influence of regional-scale anthropogenic emissions on CO2 distributions over the western North Pacific,” J. Geophys. Res. 108, 8801 (2003). [CrossRef]
  22. B. W. Berger, K. J. Davis, C. Yi, P. S. Bakwin, and C. L. Zhao, “Long-term carbon dioxide fluxes from a very tall tower in a northern forest: flux measurement methodology,” J. Atmos. Ocean. Tech. 18, 529-542 (2001). [CrossRef]
  23. K. J. Davis, P. S. Bakwin, C. Yi, B. W. Berger, C. Zhao, R. M. Teclaw, and J. G. Isebrands, “The annual cycles of CO2 and H2O exchange over a northern mixed forest as observed from a very tall tower,” Glob. Chang. Biol. 9, 1278-1293 (2003). [CrossRef]
  24. T. F. Refaat, S. Ismail, T. L. Mack, M. N. Abedin, S. D. Mayor, S. M. Spuler, and U. N. Singh, “Infrared phototransistor validation for atmospheric remote sensing application using the Raman-shifted eye-safe aerosol lidar,” Opt. Eng. 48, 086001(2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited